
1. Preface
2. LabVIEW Programming Environment

1. LabVIEW Programming Environment
2. Lab 1: Introduction to LabVIEW

3. LabVIEW MathScript and Hybrid Programming
1. LabVIEW MathScript and Hybrid Programming
2. Lab 2: LabVIEW MathScript and Hybrid Programming

4. Convolution and Linear Time-Invariant Systems
1. Convolution and Linear Time-Invariant Systems
2. Lab 3: Convolution and Its Applications

5. Fourier Series
1. Fourier Series
2. Lab 4: Fourier Series and Its Applications

6. Continuous-Time Fourier Transform
1. Continuous-Time Fourier Transform
2. Lab 5: CTFT and Its Applications

7. Digital Signals and Their Transforms
1. Digital Signals and Their Transforms
2. Lab 6: Analog-to-Digital Conversion, DTFT and DFT

8. Analysis of Analog and Digital Systems
1. Analysis of Analog and Digital Systems
2. Lab 7: System Response, Analog and Digital Filters

9. References

Preface

A typical undergraduate electrical engineering curriculum includes a signals
and systems course during which students are initially exposed to signal
processing concepts such as convolution, Fourier series, Fourier transform
and filtering. Laboratory components of signals and systems courses are
primarily based on textual .m files. Although the ability to write textual
codes is an important aspect of a lab component, students can enhance their
understanding of signal processing concepts in these courses if they
interactively experiment with their codes.

Our motivation for writing this book has thus been to present an interactive
programming approach as an alternative to the commonly practiced textual
programming in signals and systems labs to provide an efficient way for
students to interact and experiment with their codes. The interactivity
achieved via hybrid programming, that is, a combination of textual and
graphical programming, offers students a more effective tool to better
understand signal processing concepts.

Textual programming and graphical programming both have pros and cons.
In general, math operations are easier to code in textual mode. On the other
hand, graphical programming offers an easy-to-build interactive and
visualization environment along with a more intuitive approach toward
building signal processing systems.

To bring together the preferred features of textual and graphical
programming, we have designed the labs associated with a typical signals
and systems course by incorporating .m files into the National Instruments
LabVIEW graphical programming environment. This way, although
students program the code in textual .m files, they can easily achieve
interactivity and visualization in LabVIEW by just having some basic
knowledge of the software. The first two labs provide an introduction to
LabVIEW and MathScript (.m files) to help students become familiar with
both graphical and textual programming in case they have not already done
so in their earlier courses.

In addition to the signal processing concepts, students cover example
applications in each lab to learn how to relate concepts to actual real-world

applications. The applications considered span different signal processing
areas including speech processing, telecommunications and digital music
synthesis. These applications provide further incentive for students to stay
engaged in the labs.

The chapters in this book are organized into the following labs:

1. Introduction to LabVIEW

Students gain some basic familiarity with LabVIEW, such as how to use
controls, indicators and other LabVIEW graphical features, to make .m files
more interactive.

2. Introduction to MathScript

If not already familiar with .m file coding, students learn the basics of this
coding.

3. Convolution and Linear Time-Invariant Systems

Students experiment with convolution and linear time-invariant (LTI)
systems. Due to the discrete-time nature of programming, students must
make an approximation of the convolution integral. The lab, which covers
convolution properties, shows how to perform numerical approximation of
convolution. To apply convolution concepts, students examine an RLC
circuit, and build and analyze an echo cancellation system.

4. Fourier Series and Its Applications

Students explore the representation of periodic analog signals using Fourier
series and discuss the decomposition and reconstruction of periodic signals
using a finite number of Fourier coefficients. To apply the concepts they
have learned, students perform an RLC circuit analysis using periodic input
signals.

5. Continuous-Time Fourier Transform and Its Applications

Students implement continuous-time Fourier transform (CTFT) and its
properties, as well as cover amplitude modulation and high-frequency noise

removal as CTFT applications.

6. Digital Signals and Their Transforms

Students explore the transforms of digital signals. In the first part of the lab,
students examine analog-to-digital conversion and related issues including
sampling and aliasing. In the second part, students cover the
transformations consisting of discrete Fourier transform (DFT) and
discrete-time Fourier transform (DTFT) and compare them to the
corresponding transforms for continuous-time signals, namely Fourier
series and CTFT, respectively. Students also examine applications such as
dual-tone multi-frequency (DTMF) signaling for touch-tone telephones and
dithering to decrease signal distortion due to digitization.

7. Analysis of Analog and Digital Systems

During the final lab, students implement the techniques and mathematical
transforms they learned in the previous labs to perform analog and digital
filtering. They build and analyze a square root system and a filtering system
with interactive capabilities.

The codes and files associated with the labs in this book can be downloaded
from the website at www.utdallas.edu/~kehtar/signals-systems(username
= signals-systems, password = laboratory). Note that this book is meant
only as an accompanying lab book to signals and systems textbooks and
should not be used as a substitute for these textbooks.

We would like to express our gratitude to National Instruments, in particular
its Academic Marketing Division and Mr. Erik Luther, for their support and
initial publication of this book through lulu.com. We hope its publication
now through Connexions would facilitate its widespread use in signals and
systems laboratory courses.

Nasser Kehtarnavaz

Philipos C. Loizou

Mohammad T. Rahman

LabVIEW Programming Environment
This chapter provides an introduction to LabVIEW graphical programming.

The LabVIEW graphical programming environment can be used to design
and analyze a signal processing system in a more time-efficient manner
than with text-based programming environments. This chapter provides an
introduction to LabVIEW graphical programming. Also see [link], [link],
and [link] to learn more about LabVIEW graphical programming.

LabVIEW graphical programs are called virtual instruments (VIs). VIs run
based on the concept of dataflow programming. This means that execution
of a block or a graphical component is dependent on the flow of data, or,
more specifically, a block executes after data is made available at all of its
inputs. Block output data are then sent to all other connected blocks. With
dataflow programming, one can perform multiple operations in parallel
because the execution of blocks is done by the flow of data and not by
sequential lines of code.

Virtual Instruments (VIs)

A VI consists of two major components: a front panel and block diagram. A
front panel provides the user interface of a program while a block diagram
incorporates its graphical code. When a VI is located within the block
diagram of another VI, it is called a subVI. LabVIEW VIs are modular,
meaning that one can run any VI or subVI by itself.

Front Panel and Block Diagram

A front panel contains the user interfaces of a VI shown in a block diagram.
VI inputs are represented by controls such as knobs, pushbuttons and dials.
VI outputs are represented by indicators such as graphs, LEDs (light
indicators) and meters. As a VI runs, its front panel provides a display or
user interface of controls (inputs) and indicators (outputs).

A block diagram contains terminal icons, nodes, wires and structures.
Terminal icons, or interfaces through which data are exchanged between a

front panel and a block diagram, correspond to controls or indicators that
appear on a front panel. Whenever a control or indicator is placed on a front
panel, a terminal icon gets added to the corresponding block diagram. A
node represents an object or block that has input and/or output connectors
and performs a certain function. SubVIs and functions are examples of
nodes. Wires establish the flow of data in a block diagram, and structures
control the flow of data such as repetitions or conditional executions. [link]
shows front panel and block diagram windows.

Icon and Connector Pane

A VI icon is a graphical representation of a VI. It appears in the top right
corner of a block diagram or a front panel window. When a VI is inserted
into a block diagram as a subVI, its icon is displayed.

LabVIEW Windows: Front Panel and Block Diagram

A connector pane defines VI inputs (controls) and outputs (indicators). One
can change the number of inputs and outputs by using different connector
pane patterns. In [link], a VI icon is shown at the top right corner of the
block diagram, and its corresponding connector pane, with two inputs and
one output, is shown at the top right corner of the front panel.

Graphical Environment

Functions Palette

The Functions palette (see [link]) provides various function VIs or blocks to
build a system. View this palette by right-clicking on an open area of a
block diagram. Note that this palette can be displayed only in a block
diagram.

Controls Palette

The Controls palette (see [link]) features front panel controls and indicators.
View this palette by right-clicking on an open area of a front panel. Note
that this palette can be displayed only in a front panel.

Functions Palette

Tools Palette

The Tools palette offers various mouse cursor operation modes for building
or debugging a VI. The Tools palette and the frequently used tools are
shown in [link].

Controls Palette

Each tool is used for a specific task. For example, use the wiring tool to
wire objects in a block diagram. If one enables the automatic tool selection
mode by clicking on the Automatic Tool Selection button, LabVIEW
selects the best matching tool based on a current cursor position.

Building a Front Panel

In general, one constructs a VI by going back and forth between a front
panel and block diagram, placing inputs/outputs on the front panel and
building blocks on the block diagram.

Controls

Controls make up the inputs to a VI. Controls grouped in the Numeric
Controls palette(Controls → Express → Num Ctrls) are used for numerical
inputs, controls grouped in the Buttons & Switches palette(Controls →
Express → Buttons) are used for Boolean inputs, and controls grouped in
the Text Controls palette(Controls →Express →Text Ctrls) are used for
text and enumeration inputs. These control options are displayed in [link].

Tools Palette

Indicators

Indicators make up the outputs of a VI. Indicators grouped in the Numeric
Indicators palette(Controls→ Express → Numeric Inds) are used for
numerical outputs, indicators grouped in the LEDs palette(Controls →
Express → LEDs) are used for Boolean outputs, indicators grouped in the
Text Indicators palette(Controls → Express → Text Inds) are used for
text outputs, and indicators grouped in the Graph Indicators
palette(Controls → Express → Graph Indicators) are used for graphical
outputs. These indicator options are displayed in [link].

Control Palettes

Align, Distribute and Resize Objects

The menu items on the front panel toolbar (see [link]) provide options to
align and orderly distribute objects on the front panel. Normally, after one
places controls and indicators on a front panel, these options can be used to
tidy up their appearance.

Indicator Palettes

Building a Block Diagram

Express VI and Function

Express VIs denote higher-level VIs configured to incorporate lower-level
VIs or functions. These VIs are displayed as expandable nodes with a blue
background. Placing an Express VI in a block diagram opens a
configuration dialog window to adjust the Express VI parameters. As a
result, Express VIs demand less wiring. The configuration window can be
opened by double-clicking on its Express VI.

Basic operations such as addition or subtraction are represented by
functions. [link] shows three examples corresponding to three block
diagram objects (VI, Express VI and function).

One can display subVIs or Express VIs as icons or expandable nodes. If a
subVI is displayed as an expandable node, the background appears yellow.
Icons can be used to save space in a block diagram and expandable nodes

Menu to Align,
Distribute, Resize

and Reorder
Objects

Block Diagram Objects: (a) VI, (b) Express VI, (c) Function

can be used to achieve easier wiring or better readability. One can resize
expandable nodes to show their connection nodes more clearly. Three
appearances of a VI/Express VI are shown in [link].

Terminal Icons

Front panel objects are displayed as terminal icons in a block diagram. A
terminal icon exhibits an input or output as well as its data type. [link]
shows two terminal icon examples consisting of a double precision
numerical control and indicator. As shown in this figure, one can display
terminal icons as data type terminal icons to conserve space in a block
diagram.

Icon versus Expandable Node

Wires

Wires transfer data from one node to another in a block diagram. Based on
the data type of a data source, the color and thickness of its connecting
wires change.

Wires for the basic data types used in LabVIEW are shown in [link]. In
addition to the data types shown in this figure, there are some other specific
data types. For example, the dynamic data type is always used for Express
VIs, and the waveform data type, which corresponds to the output from a
waveform generation VI, is a special cluster of waveform components
incorporating trigger time, time interval and data value.

Terminal Icon Examples
Displayed in a Block Diagram

Basic Wire Types

Structures

A structure is represented by a graphical enclosure. The graphical code
enclosed in the structure gets repeated or executed conditionally. A loop
structure is equivalent to a for loop or a while loop statement in text-based
programming languages, while a case structure is equivalent to an if-else
statement.

For Loop

A for loop structure is used to perform repetitions. As illustrated in [link],
the displayed border indicates a for loop structure, where the count terminal

represents the number of times the loop is to be repeated. It is set by wiring
a value from outside of the loop to it. The iteration terminal

denotes the number of completed iterations, which always starts at zero.

For Loop

While Loop

A while loop structure allows repetitions depending on a condition (see
[link]). The conditional terminal

initiates a stop if the condition is true. Similar to a for loop, the iteration
terminal

provides the number of completed iterations, always starting at zero.

Case Structure

A case structure (see [link]) allows the running of different sets of
operations depending on the value it receives through its selector terminal,
which is indicated by

. In addition to Boolean type, the input to a selector terminal can be of
integer, string, or enumerated type. This input determines which case to
execute. The case selector

While
Loop

shows the status being executed. Cases can be added or deleted as needed.

Grouping Data: Array and Cluster

An array represents a group of elements having the same data type. An
array consists of data elements having a dimension up to 231 − 1. For
example, if a random number is generated in a loop, it is appropriate to
build the output as an array because the length of the data element is fixed
at 1 and the data type is not changed during iterations.

Similar to the structure data type in text-based programming languages, a
cluster consists of a collection of different data type elements. With clusters,
one can reduce the number of wires on a block diagram by bundling
different data type elements together and passing them to only one terminal.
One can add or extract an individual element to or from a cluster by using
the cluster functions such as Bundle by Name and Unbundle by Name.

Debugging and Profiling VIs

Probe Tool

VIs can be debugged as they run by checking values on wires with the
Probe tool. Note that the Probe tool can be accessed only in a block diagram
window.

Case
Structur

e

With the Probe tool, breakpoints and execution highlighting, one can
identify the source of an incorrect or an unexpected outcome. To visualize
the flow of data during program execution, a breakpoint can be used to
pause the execution of a VI at a specific location.

Profile Tool

Timing and memory usage information – in other words, how long a VI
takes to run and how much memory it consumes – can be gathered with the
Profile tool. It is required to make sure that a VI is stopped before setting up
a Profile window.

An effective way to become familiar with LabVIEW programming is to
review examples. In the lab that follows, we explore most of the key
LabVIEW programming features by building simple VIs.

Containers and Decoration Tools

Containers and Decoration tools can be used to organize front panel
controls and indicators. Container tools are grouped in the Containers
pallete(Controls → Modern → Containers → Classic → Classic
Containers) and Decoration tools are grouped in the Decorations
pallete(Controls → Modern → Decorations).

One can use Tab Control(Controls → Modern → Containers → Tab
Control → Classic → Classic Containers →Tab Control) to display
various controls and indicators within a limited screen area. This feature
helps one to organize controls and indicators under different tabs as
illustrated in [link]. To add more tabs or delete tabs, right-click the border
area and choose one of the following options: Add Page After, Add Page
Before, Duplicate Page or Remove Page.

Tab Control

Lab 1: Introduction to LabVIEW

The objective of this lab is to offer an initial hands-on experience in
building a VI. More detailed explanations of the LabVIEW features
mentioned here can be found in the [link], [link], and [link]. One can launch
LabVIEW 2011 (the latest version at the time of this publication) by
double-clicking on the LabVIEW 2011 icon, which opens the dialog
window shown in [link].

Starting LabVIEW

Building a Simple VI

To become familiar with the LabVIEW programming environment, let us
calculate the sum and average of two input values in the following step-by-
step example.

Sum and Average VI Example Using Graphical Programming

To create a new VI, click on the Blank VI under New, as shown in [link].
This can also be done by choosing File → New VI from the menu. As a
result, a blank front panel and a blank block diagram window appear, see
[link]. Remember that a front panel and block diagram coexist when one
builds a VI, meaning that every VI will have both a front panel and an
associated block diagram.

The number of VI inputs and outputs is dependent on the VI function. In
this example, two inputs and two outputs are needed, one output generating
the sum and the other generating the average of two input values. Create the
inputs by locating two numeric controls on the front panel. This can be
done by right-clicking on an open area of the front panel to bring up the
Controls palette, followed by choosing Controls → Modern → Numeric
→ Numeric Control. Each numeric control automatically places a
corresponding terminal icon on the block diagram. Double-clicking on a
numeric control highlights its counterpart on the block diagram and vice
versa.

Next, label the two inputs as x and y using the Labeling tool from the Tools
Palette, which can be displayed by choosing View → Tools Palette from
the menu bar. Choose the Labeling tool and click on the default labels,
Numeric and Numeric 2, to edit them. Alternatively, if the automatic tool
selection mode is enabled by clicking Automatic Tool Selection in the
Tools Palette, the labels can be edited by simply double-clicking on the
default labels. Editing a label on the front panel changes its corresponding
terminal icon label on the block diagram and vice versa.

Similarly, the outputs are created by locating two numeric indicators
(Controls → Modern → Numeric →Numeric Indicator) on the front
panel. Each numeric indicator automatically places a corresponding
terminal icon on the block diagram. Edit the labels of the indicators to read
“Sum“ and “Average.”

For a better visual appearance, one can align, distribute and resize objects
on a front panel window using the front panel toolbar. To do this, select the
objects to be aligned or distributed and apply the appropriate option from
the toolbar menu. [link] shows the configuration of the front panel just
created.

Blank VI

Now build a graphical code on the block diagram to perform the summation
and averaging operations. Note that <Ctrl-E> toggles between a front panel
and a block diagram window. If objects on a block diagram are too close to
insert other functions or VIs in-between, one can insert a horizontal or
vertical space by holding down the <Ctrl> key to create space horizontally
and/or vertically. As an example, [link]b illustrates a horizontal space
inserted between the objects shown in [link]a.

Front Panel Configuration

Next, place an Add function (Functions →Express →Arith & Compar
→Express Numeric →Add) and a Divide function (Functions →Express
→Arith & Comp →Express Numeric →Divide) on the block diagram.
Enter the divisor, in this case 2, in a Numeric Constant(Functions
→Express →Arith & Compar →Express Numeric →Numeric
Constant) and connect it to the y terminal of the Divide function using the
Wiring tool.

To achieve proper data flow, wire functions, structures and terminal icons
on a block diagram using the Wiring tool. To wire these objects, point the
Wiring tool at the terminal of the function or subVI to be wired, left-click
on the terminal, drag the mouse to a destination terminal and left-click once
again. [link] illustrates the wires placed between the terminals of the
numeric controls and the input terminals of the Add function. Notice that
the label of a terminal gets displayed whenever one moves the cursor over
the terminal if the automatic tool selection mode is enabled. Also, note that
the Run button

Inserting Horizontal/Vertical Space: (a) Creating Space While Holding
Down the <Ctrl> Key, (b) Inserted Horizontal Space.

on the toolbar remains broken until one completes the wiring process.

For better block diagram readability, one can clean up wires hidden behind
objects or crossed over other wires by right-clicking on them and choosing
Clean Up Wire from the shortcut menu. Any broken wires can be cleared
by pressing <Ctrl-B> or Edit →Remove Broken Wires.

To view or hide the label of a block diagram object, such as a function,
right-click on the object and check (or uncheck) Visible Items →Label
from the shortcut menu. Also, one can show a terminal icon corresponding
to a numeric control or indicator as a data type terminal icon by right-
clicking on the terminal icon and unchecking View As Icon from the
shortcut menu. [link] shows an example where the numeric controls and
indicators are depicted as data type terminal icons. The notation DBL
indicates double precision data type.

Wiring Block Diagram Objects.

It is worth noting that there is a shortcut to build the above VI. Instead of
choosing the numeric controls, indicators or constants from the Controls or
Functions palette, one can use the shortcut menu Create, activated by right-
clicking on a terminal of a block diagram object such as a function or a
subVI. As an example of this approach, create a blank VI and locate an
Add function. Right-click on its x terminal and choose Create →Control
from the shortcut menu to create and wire a numeric control or input. This
locates a numeric control on the front panel as well as a corresponding
terminal icon on the block diagram. The label is automatically set to x.
Create a second numeric control by right-clicking on the y terminal of the
Add function. Next, right-click on the output terminal of the Add function
and choose Create →Indicator from the shortcut menu. A data type
terminal icon, labeled as x+y, is created on the block diagram as well as a
corresponding numeric indicator on the front panel.

Next, right-click on the y terminal of the Divide function to choose Create
→Constant from the shortcut menu. This creates a numeric constant as the
divisor and wires its y terminal. Type the value 2 in the numeric constant.
Right-click on the output terminal of the Divide function, labeled as x/y,

Completed Block Diagram.

and choose Create →Indicator from the shortcut menu. If the wrong
option is chosen, the terminal does not get wired. An incorrect terminal
option can easily be changed by right-clicking on the terminal and choosing
Change to Control from the shortcut menu.

To save the created VI for later use, choose File →Save from the menu or
press <Ctrl-S> to bring up a dialog window to enter a name. Type “Sum and
Average” as the VI name and click Save.

To test the functionality of the VI, enter some sample values in the numeric
controls on the front panel and run the VI by choosing Operate →Run, by
pressing <Ctrl-R> or by clicking the Run button on the toolbar. From the
displayed output values in the numeric indicators, the functionality of the
VI can be verified. [link] illustrates the outcome after running the VI with
two inputs, 10 and 15.

VI Verification

SubVI Creation

If it is desired to use a VI as part of a higher-level VI, one needs to
configure its connector pane. A connector pane assigns inputs and outputs
of a subVI to its terminals through which data are exchanged.

The default pattern of a connector pane is determined based on the number
of controls and indicators. In general, the terminals on the left side of a
connector pane pattern are used for inputs and the ones on the right side for
outputs. One can add terminals to or remove them from a connector pane by
right-clicking and choosing Add Terminal or Remove Terminal from the
shortcut menu. If the number of inputs/outputs or the distribution of
terminals are changed, the connector pane pattern can be replaced with a
new one by right-clicking and choosing Patterns from the shortcut menu.
Once a pattern is selected, one needs to reassign each terminal to a control
or an indicator by using the Wiring tool or by enabling the automatic tool
selection mode.

[link]a illustrates how to assign a Sum and Average VI terminal to a
numeric control. The completed connector pane is shown in [link]b. Notice
that the output terminals have thicker borders. The color of a terminal
reflects its data type.

Considering that a subVI icon is displayed on the block diagram of a
higher-level VI, it is important to edit the subVI icon for it to be explicitly
identifiable. Double-clicking on the top-right corner icon of a block
diagram opens the Icon Editor. The Icon Editor tools are similar to those in
other graphical editors, such as Microsoft Paint. Editing the Sum and
Average VI icon is illustrated in [link].

Connector Pane: (a) Assigning a Terminal to a Control, (b) Completed
Terminal Assignment.

A subVI can also be created from a section of a VI. To do so, select the
nodes on the block diagram to be included in the subVI, as shown in
[link]a. Then, choose Edit →Create SubVI to insert a new subVI icon.
[link]b illustrates the block diagram with an inserted subVI. One can open
and edit this subVI by double-clicking on its icon on the block diagram.
Save this subVI as Sum and Average.vi. This subVI performs the same
function as the original Sum and Average VI.

Editing SubVI Icon.

Using Structures and SubVIs

Now let us consider another example to understand the use of structures and
subVIs. In this example, we use a VI to show the sum and average of two
input values, which are altered in a continuous fashion. If the average of the
two inputs becomes greater than a preset threshold value, a LED warning
light turns on.

First, build a front panel as shown in [link]a. For the inputs, consider two
Knobs(Controls →Modern →Numeric →Knob). Adjust the size of the
knobs by using the Positioning tool. One can modify knob properties such
as precision and data type by right-clicking and choosing Properties from
the shortcut menu. A Knob Properties dialog box opens and an
Appearance tab is shown by default. Edit the label of one of the knobs to
read Input 1. Select the Data Type tab, click Representation and select
Byte to change the data type from double precision to byte. One can also
perform this by right-clicking on the knob and choosing Representation
→Byte from the shortcut menu. In the Data Type tab, a default value needs

Creating a SubVI: (a) Selecting Nodes to Make a SubVI, (b)
Inserted SubVI Icon.

to be specified. In this example, the default value is considered to be 0. The
default value can be set by right-clicking on the control and choosing Data
Operations →Make Current Value Default from the shortcut menu. Also,
this control can be set to a default value by right-clicking and choosing
Data Operations →Reinitialize to Default Value from the shortcut menu.

Label the second knob as Input 2 and repeat all the adjustments as carried
out for the first knob except for the data representation part. Specify the
data type of the second knob to be double precision to demonstrate the
difference in the outcome. As the final front panel configuration step, align
and distribute the objects using the appropriate buttons on the front panel
toolbar.

To set the outputs, locate and place a numeric indicator, a round LED
(Controls →Modern →Boolean →Round LED) and a gauge (Controls
→Modern →Numeric →Gauge). Edit the labels of the indicators as
shown in [link].

Example of Structure and SubVI: (a) Front Panel, (b) Block

Locate a Greater or Equal? function from Functions →Programming
→Comparison →Greater or Equal? to compare the average output of the
subVI with a threshold value. Create a wire branch on the wire between the
Average terminal of the subVI and its indicator via the Wiring tool. Then,
extend this wire to the x terminal of the Greater or Equal? function. Right-
click on the y terminal of the Greater or Equal? function and choose Create
→Constant to place a numeric constant. Enter 9 in the numeric constant
and wire the round LED, labeled as Warning, to the x>=y? terminal of this
function to provide a Boolean value.

To run the VI continuously, use a while loop structure. Choose Functions
→Programming →Structures →While Loopto create a while loop.
Change the size by dragging the mouse to enclose the objects in the while
loop, as illustrated in [link].

Diagram.

Once this structure is created, its boundary, together with the loop iteration
terminal

and conditional terminal

, get shown on the block diagram. If one creates the while loop by using
Functions →Programming →Structures → While Loop, the Stop button
is not included as part of the structure. One can create this button by right-
clicking on the conditional terminal and choosing Create →Control from
the shortcut menu. It is possible to wire a Boolean condition to a

While Loop Enclosure.

conditional terminal, instead of a Stop button, to stop the loop
programmatically.

Next run the VI to verify its functionality. After clicking the Run button on
the toolbar, adjust the knobs to alter the inputs. Verify whether the average
and sum are displayed correctly in the gauge and numeric indicators. Note
that only integer values can be entered via the Input 1 knob while real
values can be entered via the Input 2 knob. This is due to the data types
associated with these knobs. The Input 1 knob is set to byte type, in other
words, I8 or 8-bit signed integer. As a result, one can enter only integer
values within the range -128 and 127. Considering that the minimum and
maximum values of this knob are set to 0 and 10, respectively, one can
enter only integer values from 0 to 10 for this input.

Front Panel as VI Runs.

Debugging VIs: Probe Tool

Use the Probe tool to observe data that are being passed while a VI is
running. A probe can be placed on a wire by using the Probe tool or by
right-clicking on a wire and choosing Probe from the shortcut menu.
Probes can also be placed while a VI is running.

Placing probes on wires creates probe windows through which one can
observe intermediate values. As an example of using custom probes, use
four probe windows at the probe locations 1 through 4 in the Sum and
Average VI to probe the values at those locations. These probes and their
locations are illustrated in [link].

Profile Tool

With the Profile tool, one can gather timing and memory usage information.
Make sure to stop the VI before selecting Tools →Profile →Performance
and Memory to open a Profile window.

Place a checkmark in the Timing Statistics checkbox to display timing
statistics of the VI. The Timing Details option offers more detailed VI
statistics such as drawing time. To profile memory usage as well as timing,
check the Memory Usage checkbox after checking the Profile Memory

Probe Tool.

Usage checkbox. Note that this option can slow down VI execution. Start
profiling by clicking the Start button on the profiler, then run the VI.
Obtain a snapshot of the profiler information by clicking on the Snapshot
button. After viewing the timing information, click the Stop button. The
profile statistics can be stored in a text file by clicking the Save button.

An outcome of the profiler is shown in [link] after running the Sum and
Average or L1.1 VI. [link] provides more details on the Profile tool.

Lab Exercises

Exercise:

Profile Window after Running Sum and Average VI.

Problem:

Build a VI to compute the variance of an array x. The variance σ is
defined as:
Equation:

σ =
1

N

N

∑
j=1

(xj − μ)2

where μdenotes the average of the array x. For x, use all the integers
from 1 to 1000.

Solution:

Insert Solution Text Here

Exercise:

Problem:

Build a VI to check whether a given positive integer n is a prime
number and display a warning message if it is not a prime number.

Solution:

Insert Solution Text Here

Exercise:

Problem:

Build a VI to generate the first Nprime numbers and store them using
an indexing array. Display the outcome.

Solution:

Insert Solution Text Here

Exercise:

Problem:

Build a VI to sort N integer numbers (positive or negative) in
ascending or descending order.

Solution:

Insert Solution Text Here

LabVIEW MathScript and Hybrid Programming

In signals and systems lab courses, .m file coding is widely used. LabVIEW
MathScript is a feature of the newer versions of LabVIEW that allows one
to include .m files within its graphical environment. As a result, one can
perform hybrid programming, that is, a combination of textual and
graphical programming, when using this feature. This chapter provides an
introduction to MathScript or .m file textual coding. See [link] and [link]
for advanced MathScript aspects.

MathScripting can be done via the LabVIEW MathScript interactive
window or node. The LabVIEW MathScript interactive window, shown in
[link], consists of a Command Window, an Output Window and a
MathScript Window. The Command Window interface allows one to enter
commands and debug script or to view help statements for built-in
functions. The Output Window is used to view output values and the
MathScript Window interface to display variables and command history as
well as edit scripts. With script editing, one can execute a group of
commands or textual statements.

A LabVIEW MathScript node represents the textual .m file code via a blue
rectangle as shown in [link]. Its inputs and outputs are defined on the border
of this rectangle for transferring data between the graphical environment
and the textual code. For example, as indicated in [link], the input variables
on the left side, namely lf, hf and order, transfer values to the .m file script,
and the output variables on the right side, F and sH, transfer values to the
graphical environment. This process allows .m file script variables to be
used within the LabVIEW graphical programming environment.

LabVIEW MathScript Interactive Window

LabVIEW MathScript Node Interface

Lab 2: LabVIEW MathScript and Hybrid Programming

Arithmetic Operations

There are four basic arithmetic operators in .m files:

+ addition

- subtraction

* multiplication

/ division (for matrices, it also means inversion)

The following three operators work on an element-by-element basis:

.* multiplication of two vectors, element-wise

./ division of two vectors, element-wise

.^ raising all the elements of a vector to a power

As an example, to evaluate the expression a3 + √bd − 4c , where a = 1.2
, b = 2.3, c = 4.5and d = 4, type the following commands in the
Command Window to get the answer (ans) :

>> a=1.2;

>> b=2.3;

>> c=4.5;

>> d=4;

>> a^3+sqrt(b*d)-4*c

ans =

-13.2388

Note the semicolon after each variable assignment. If the semicolon is
omitted, the interpreter echoes back the variable value.

Vector Operations

Consider the vectors x = [x1,x2,...,xn]and y = [y1,y2,...,yn]. The
following operations indicate the resulting vectors:

x*.y = [x1y1,x2y2,...,xnyn]

x./y = [x1

y1
,
x2

y3
,..., xn

yn
]

x.^p = [xp
1,x

p
2,...,x

p
n]

Note that because the boldfacing of vectors/matrices are not used in .m
files, in the notation adopted in this book, no boldfacing of vectors/matrices
is shown to retain consistency with .m files.

The arithmetic operators + and – can be used to add or subtract matrices,
vectors or scalars. Vectors denote one-dimensional arrays and matrices
denote multidimensional arrays. For example,

>> x=[1,3,4]

>> y=[4,5,6]

>> x+y

ans=

5 8 10

In this example, the operator + adds the elements of the vectors x and y,
element by element, assuming that the two vectors have the same
dimension, in this case 1 × 3 or one row with three columns. An error

occurs if one attempts to add vectors having different dimensions. The same
applies for matrices.

To compute the dot product of two vectors (in other words, ∑i xiyi), use
the multiplication operator ‘*’ as follows:

>> x*y'

ans =

43

Note the single quote after y denotes the transpose of a vector or a matrix.

To compute an element-by-element multiplication of two vectors (or two
arrays), use the following operator:

>> x .* y

ans =

4 15 24

That is, x .* y means [1 × 4,3 × 5,4 × 6] = [.

Complex Numbers

LabVIEW MathScript supports complex numbers. The imaginary number is
denoted with the symbol i or j, assuming that these symbols have not been
used any other place in the program. It is critical to avoid such a symbol
conflict for obtaining correct outcome. Enter the following and observe the
outcomes:

>> z=3 + 4i % note the multiplication sign ‘*’ is
not needed after 4

>> conj(z) % computes the conjugate of z

4 15 24]

>> angle(z) % computes the phase of z

>> real(z) % computes the real part of z

>> imag(z) % computes the imaginary part of z

>> abs(z) % computes the magnitude of z

One can also define an imaginary number with any other user-specified
variables. For example, try the following:

>> img=sqrt(-1)

>> z=3+4*img

>> exp(pi*img)

Array Indexing

In .m files, all arrays (vectors) are indexed starting from 1 − in other words,
x(1) denotes the first element of the array x. Note that the arrays are
indexed using parentheses (.) and not square brackets [.], as done in C/C++.
To create an array featuring the integers 1 through 6 as elements, enter:

>> x=[1,2,3,4,5,6]

Alternatively, use the notation ‘:’

>> x=1:6

This notation creates a vector starting from 1 to 6, in steps of 1. If a vector
from 1 to 6 in steps of 2 is desired, then type:

>> x=1:2:6

ans =

1 3 5

Also, examine the following code:

>> ii=2:4:17

>> jj=20:-2:0

>> ii=2:(1/10):4

One can easily extract numbers in a vector. To concatenate an array, the
example below shows how to use the operator ‘[]’:

>> x=[1:3 4 6 100:110]

To access a subset of this array, try the following:

>> x(3:7)

>> length(x) % gives the size of the array or
vector

>> x(2:2:length(x))

Allocating Memory

One can allocate memory for one-dimensional arrays (vectors) using the
command zeros. The following command allocates memory for a 100-
dimensional array:

>> y=zeros(100,1);

>> y(30)

ans =

0

One can allocate memory for two-dimensional arrays (matrices) in a similar
fashion. The command

>> y=zeros(4,5)

defines a 4 by 5 matrix. Similar to the command zeros, the command ones
can be used to define a vector containing all ones,

>> y=ones(1,5)

ans=

1 1 1 1 1

Special Characters and Functions

Some common special characters used in .m files are listed below for later
reference:

Symbol Meaning

pi π(3.14.....)

^ indicates power (for example, 3^2=9)

NaN not-a-number, obtained when encountering undefined
operations, such as 0/0

Inf Represents +∞

; indicates the end of a row in a matrix; also used to
suppress printing on the screen (echo off)

% comments − anything to the right of % is ignored by the
.m file interpreter and is considered to be comments

Some common special characters used in .m files

‘ denotes transpose of a vector or a matrix; also used to
define strings, for example, str1='DSP'

… denotes continuation; three or more periods at the end of
a line continue current function to next line

Some special functions are listed below for later reference:

Some common functions used in .m files

Function Meaning

sqrt indicates square root, for example, sqrt(4)=2

abs absolute value ∣ . ∣, for example, abs(-3)=3

length length(x) gives the dimension of the array x

sum finds sum of the elements of a vector

find finds indices of nonzero

Here is an example of the function length,

>> x=1:10;

>> length(x)

ans =

10

The function find returns the indices of a vector that are non-zero. For
example,

I = find(x>4) finds all the indices of x greater than 4. Thus, for the
above example:

>> find(x> 4)

ans =

5 6 7 8 9 10

Control Flow

.m files have the following control flow constructs:

• if statements

• switch statements

• for loops

• while loops

• break statements

The constructs if, for, switch and while need to terminate with an end
statement. Examples are provided below:

if

>> x=-3;

if x>0

str='positive'

elseif x<0

str='negative'

elseif x== 0

str='zero'

else

str='error'

end

See the value of 'str' after executing the above code.

while

>> x=-10;

while x<0

x=x+1;

end

See the value of x after executing the above code.

for loop

>> x=0;

for j=1:10

x=x+j;

end

The above code computes the sum of all the numbers from 1 to 10.

break

With the break statement, one can exit early from a for or a while loop:

>> x=-10;

while x<0

x=x+2;

if x = = -2

break;

end

end

LabVIEW MathScript supports the relational and logical operators listed
below.

Relational Operators

Symbol Meaning

<= less than equal

< less than

>= greater than equal

> greater than

== equal

Relational Operators

~= not equal

Logical Operators

Logical Operators

Symbol Meaning

& AND

∣ OR

~ NOT

Programming in the LabVIEW MathScript Window

The MathScript feature allows one to include .m files, which can be created
using any text editor. To activate the LabVIEW MathScript interactive
window, select Tools → MathScript Window from the main menu. To
open the LabVIEW MathScript text editor, click the Script tab of the
LabVIEW MathScript Window (see [link]). After typing the .m file textual
code, save it and click on the Run script button (green arrow) to run it.

For instance, to write a program to compute the average (mean) of a vector
x, the program should use as its input the vector x and return the average
value. To write this program, follow the steps outlined below.

Type the following in the empty script:

x=1:10

L=length(x);

sum=0;

for j=1:L

sum=sum+x(j);

end

y=sum/L % the average of x

From the Editor pull-down menu, go to File → Save Script As and enter
average.m for the file name. Then click on the Run script button to run the
program. [link] shows the LabVIEW MathScript interactive window after
running the program.

Sound Generation

LabVIEW MathScript Interactive Window after Running the Program
Average

Assuming the computer used has a sound card, one can use the function
sound to play back speech or audio files through its speakers. That is,
sound(y,FS) sends the signal in a vector y (with sample frequency FS) out
to the speaker. Stereo sounds are played on platforms that support them,
with y being an N-by-2 matrix.

Try the following code and listen to a 400 Hz tone:

>> t=0:1/8000:1;

>> x=cos(2*pi*400*t);

>> sound(x,8000);

Now generate a noise signal by typing:

>> noise=randn(1,8000); % generate 8000 samples of
noise

>> sound(noise,8000);

The function randn generates Gaussian noise with zero mean and unit
variance.

Loading and Saving Data

One can load or store data using the commands load and save. To save the
vector x of the above code in the file data.mat, type:

>> save data x

Note that LabVIEW MathScript data files have the extension .mat. To
retrieve the data saved, type:

>> load data

The vector x gets loaded in memory. To see memory contents, use the
command whos,

>> whos

Variable Dimension Type x 1x8000 double array

The command whos gives a list of all the variables currently in memory,
along with their dimensions. In the above example, x contains 8000
samples.

To clear up memory after loading a file, type clear all when done. This
is important because if one does not clear all the variables, one could
experience conflicts with other programs using the same variables.

Reading Wave and Image Files

With LabVIEW MathScript, one can read data from different file types
(such as .wav, .jpeg and .bmp) and load them in a vector.

To read an audio data file with .wav extension, use the following command:

>> [y Fs]=wavread(‘filename’)

This command reads a wave file specified by the string filename and
returns the sampled data in y with the sampling rate of Fs (in hertz).

To read an image file, use the following command:

>> [y]=imread(‘filename’, ‘filetype’)

This command reads a grayscale or color image from the string filename,
where filetype specifies the format of the file and returns the image data in
the array y.

Signal Display

Several tools are available in LabVIEW to display data in a graphical
format. Throughout the book, signals in both the time and frequency
domains are displayed using the following two graph tools.

Waveform Graph—Displays data acquired at a constant rate.

XY Graph—Displays data acquired at a non-constant rate, such as data
acquired when a trigger occurs. A waveform graph can be created on a front
panel by choosing Controls→ Express → Waveform Graph. [link] shows
a waveform graph and the waveform graph elements which can be opened
by right-clicking on the graph and selecting Visible Items from the shortcut
menu.

Often a waveform graph is tied with the function Build
Waveform(Function→ Programming → Waveform → Build

Waveform Graph

Waveform) to calibrate the x scale (which is time scale for signals), as
shown in [link].

Create an XY graph from a front panel by choosing Controls→ Express →
XY Graph. [link] shows an XY graph and its different elements.

Build Waveform
Function and

Waveform
Graph

An XY graph displays a signal at a non-constant rate, and one can tie
together its X and Y vectors to display the signal via the Build XY Graph
function. This function automatically appears on the block diagram when
placing an XY graph on the front panel, as shown in [link]. Note that one
can use the function Bundle (Functions → Programming → Cluster &
Variant → Bundle) instead of Build XY Graph.

XY Graph

Hybrid Programming

As stated earlier, the LabVIEW MathScript feature can be used to perform
hybrid programming, in other words, a combination of textual .m files and
graphical objects. Normally, it is easier to carry out math operations via .m
files while maintaining user interfacing, interactivity and analysis in the
more intuitive graphical environment of LabVIEW. Textual .m file codes
can be typed in or copied and pasted into LabVIEW MathScript nodes.

Sum and Average VI Example Using Hybrid Programming

Sum and Average VI Example Using Hybrid Programming

Choose Functions →Programming →Structures → MathScript to
create a LabVIEW MathScript node (see [link]). Change the size of the
window by dragging the mouse.

Build XY Graph
Function

Now build the same program average using a LabVIEW MathScript node.
The inputs to this program consist of x and y. To add these inputs, right-

LabVIEW MathScript Node Creation

click on the border of the LabVIEW MathScript node and click on the Add
Input option (see [link]).

After adding these inputs, create controls to change the inputs interactively
via the front panel. By right-clicking on the border, add outputs in a similar
manner. An important issue to consider is the selection of output data type.
The outputs of the Sum and Average VI are scalar quantities. Choose data
types by right-clicking on an output and selecting the Choose Data Type
option (see [link]).

(a) Adding Inputs, (b) Creating Controls

Finally, add numeric indicators in a similar fashion as indicated earlier.
[link] shows the completed block diagram and front panel.

Building a Signal Generation System Using Hybrid Programming

In this section, let us see how to generate and display aperiodic continuous-
time signals or pulses in the time domain. One can represent such signals
with a function of time. For simulation purposes, a representation of time t
is needed. Note that the time scale is continuous while computer programs

(a) Adding Outputs, (b) Choosing Data Types

(a) Completed Block Diagram, (b) Completed Front Panel

operate in a discrete fashion. This simulation can be achieved by
considering a very small time interval. For example, if a 1-second duration
signal in millisecond increments (time interval of 0.001 second) is
considered, then one sample every 1 millisecond and a total of 1000
samples are generated for the entire signal. This continuous-time signal
approximation is discussed further in later chapters. It is important to note
that there is a finite number of samples for a continuous-time signal, and, to
differentiate this signal from a discrete-time signal, one must assign a much
higher number of samples per second (very small time interval).

[link] shows two continuous-time signals x1(t) and x2(t)with a duration of
3 seconds. By setting the time interval dt to 0.001 second, there is a total of
3000 samples at t = 0,0.001,0.002,0.003,.......,2.999 seconds.

The signal x1(t) can be represented mathematically as follows:
Equation:

x1(t) =

Continuous-Time Signals

0 0 ≤ t < 1

1 1 ≤ t < 2

0 2 ≤ t < 3

To simulate this signal, use the LabVIEW MathScript functions ones and
zeros. The signal value is zero during the first second, which means the
first 1000 samples are zero. This portion of the signal is simulated with the
function zeros(1,1000). In the next second (next 1000 samples), the
signal value is 2, and this portion is simulated by the function
2*ones(1,1000). Finally, the third portion of the signal is simulated by
the function zeros(1,1000). In other words, the entire duration of the
signal is simulated by the following .m file function:

x1=[zeros(1,1/dt) 2*ones(1,1/dt) zeros(1,1/dt)]

The signal x2(t) can be represented mathematically as follows:
Equation:

x2(t) =

Use a linearly increasing or decreasing vector to represent the linear
portions. The time vectors for the three portions or segments of the signal
are 0:dt:1-dt, 1:dt:2-dt and 2:dt:3-dt. The first segment is a
linear function corresponding to a time vector with a slope of 2; the second
segment is a linear function corresponding to a time vector with a slope of
-2 and an offset of 4; and the third segment is simply a constant vector of
zeros. In other words, simulate the entire duration of the signal for any
value of dt by the following .m file function:

x2=[2*(0:dt:(1-dt)) -2*(1:dt:(2-dt))+4
zeros(1,1/dt)].

[link] and [link] show the block diagram and front panel of the above signal
generation system, respectively. Display the signals using a Waveform
Graph(Controls→ Express → Waveform Graph) and a Build
Waveform function (Function→ Programming → Waveform → Build
Waveform). Note that the default data type in MathScript is double
precision scalar. So whenever an output possesses any other data type, one

2t 0 ≤ t < 1

−2t + 4 1 ≤ t < 2

0 2 ≤ t < 3

needs to right-click on the output and select the Choose Data Type option.
In this example, x1 and x2 are double precision one-dimensional arrays that
are specified accordingly.

Block Diagram of a Signal Generation System

Building a Periodic Signal Generation System Using Hybrid
Programming

Front Panel of a Signal Generation System

In this section, build a simple periodic signal generation system in hybrid
mode to set the stage for the chapters that follow. This system involves
generating a periodic signal in textual mode and displaying it in graphical
mode. Modify the shape of the signal (sine, square, triangle or sawtooth) as
well as its frequency and amplitude by using appropriate front panel
controls. The block diagram and front panel of this system using a
LabVIEW MathScript node are shown in [link] and [link], respectively. The
front panel includes the following three controls:

Waveform type – Select the shape of the input waveform as either sine,
square, triangular or sawtooth waves.

Amplitude – Control the amplitude of the input waveform.

Frequency – Control the frequency of the input waveform.

Periodic Signal Generation System Block Diagram

To build the block diagram, first write a .m file code to generate four types
of waveforms using the .m file functions sin, square and sawtooth.
To change the amplitude and frequency of the waveforms, use two controls
named Amplitude (A) and Frequency (f). Waveform Type (w) is another
input controlled by the Enum Control for selecting the waveform type.
With this control, one can select from multiple inputs. Create an Enum
Control from the front panel by invoking Controls → Modern → Ring &
Enum → Enum. Right-click on the Enum Control to select properties
and the edit item tab to choose different items as shown in [link]. After
inserting each item, the digital display shows the corresponding number
value for that item, which is the output of the Enum Control.

Finally, display the waveforms with a Waveform Graph(Controls→
Express → Waveform Graph) and a Build Waveform function

Periodic Signal Generation System Front Panel

(Function→ Programming → Waveform → Build Waveform).

Lab Exercises

Exercise:

Enum Control Properties

Problem:

Write a .m file code to add all the numbers corresponding to the even
indices of an array. For instance, if the array x is specified as x = [1, 3,
5, 10], then 13 (= 3+10) should be returned. Use the program to find
the sum of all even integers from 1 to 1000. Run your code using the
LabVIEW MathScript interactive window. Also, redo the code where x
is the input vector and y is the sum of all the numbers corresponding to
the even indices of x.

Solution:

Insert Solution Text Here

Exercise:

Problem: 2. Explain what the following .m file does:

L=length(x);

for j=1:L

if x(j) < 0

x(j)=-x(j);

end

end

Rewrite this program without using a for loop.

Solution:

Insert Solution Text Here

Exercise:

Problem:

3. Write a .m file code that implements the following hard-limiting
function:
Equation:

x(t) = {

For t, use 1000 random numbers generated via the function rand.

Solution:

Insert Solution Text Here

Exercise:

Problem:

4. Build a hybrid VI to generate two sinusoid signals with the
frequencies f1 Hz and f2 Hz and the amplitudes A1 and A2, based on a
sampling frequency of 8000 Hz with the number of samples being 256.
Set the frequency ranges from 100 to 400 Hz and set the amplitude
ranges from 20 to 200. Generate a third signal with the frequency f3 =
(mod (lcm (f1, f2), 400) + 100) Hz, where mod and lcm denote the
modulus and least common multiple operation, respectively, and the
amplitude A3 is the sum of the amplitudes A1 and A2. Use the same
sampling frequency and number of samples as specified for the first
two signals. Display all the signals using the legend on the same
waveform graph and label them accordingly.

Solution:

Insert Solution Text Here

0.2 t ≥ 0.2

−0.2 t < 0.2

Convolution and Linear Time-Invariant Systems

Convolution and Its Numerical Approximation

The output y(t) of a continuous-time linear time-invariant (LTI) system is
related to its input x(t) and the system impulse response h(t) through the
convolution integral expressed as (for details on the theory of convolution
and LTI systems, refer to signals and systems textbooks, for example,
references [link] - [link]):
Equation:

y(t) =

∞

∫

−∞

h(t − τ)x(τ)dτ

For a computer program to perform the above continuous-time convolution
integral, a numerical approximation of the integral is needed noting that
computer programs operate in a discrete – not continuous – fashion. One
way to approximate the continuous functions in the Equation (1) integral is
to use piecewise constant functions. Define δΔ(t) to be a rectangular pulse
of width Δ and height 1, centered at t = 0:
Equation:

δΔ(t) = {

Approximate a continuous function x(t) with a piecewise constant function
xΔ(t) as a sequence of pulses spaced every Δ seconds in time with heights
x(kΔ):
Equation:

xΔ(t) =
∞

∑
k=−∞

x(kΔ)δΔ(t − kΔ)

1 −Δ/2 ≤ t ≤ Δ/2

0 otherwise

It can be shown in the limit as Δ → 0,xΔ(t) → x(t). As an example,
[link] shows the approximation of a decaying exponential
x(t) = exp(− t

2) starting from 0 using Δ = 1. Similarly, h(t) can be
approximated by
Equation:

hΔ(t) =
∞

∑
k=−∞

h(kΔ)δΔ(t − kΔ)

One can thus approximate the convolution integral by convolving the two
piecewise constant signals as follows:
Equation:

yΔ(t) =

∞

∫

−∞

hΔ(t − τ)xΔ(τ)dτ

Notice that yΔ(t) is not necessarily a piecewise constant. For computer
representation purposes, discrete output values are needed, which can be
obtained by further approximating the convolution integral as indicated
below:
Equation:

yΔ(nΔ) = Δ

∞

∑
k=−∞

x(kΔ)h((n − k)Δ)

If one represents the signals hΔ(t) and xΔ(t) in a .m file by vectors
containing the values of the signals at t = nΔ, then Equation (5) can be
used to compute an approximation to the convolution of x(t) and h(t).

Approximation of a Decaying Exponential with
Rectangular Strips of Width 1

Compute the discrete convolution sum ∑∞
k=−∞ x(kΔ)h((n − k)Δ)with

the built-in LabVIEW MathScript command conv. Then, multiply this sum
by Δ to get an estimate of y(t) at t = nΔ Note that as Δ is made smaller,
one gets a closer approximation to y(t).

Convolution Properties

Convolution satisfies the following three properties (see [link]):

Commutative property

Equation:

x(t) ∗ h(t) = h(t) ∗ x(t)

Associative property

Equation:

x(t) ∗ h1(t) ∗ h2(t) = x(t) ∗ {h1(t) ∗ h2(t)}

Distributive property

Equation:

x(t) ∗ {h1(t) + h2(t)} = x(t) ∗ h1(t) + x(t) ∗ h2(t)

Convolution Properties

Lab 3: Convolution and Its Applications

This lab involves experimenting with the convolution of two continuous-time signals. The
main mathematical part is written as a .m file, which is then used as a LabVIEW MathScript
node within the LabVIEW programming environment to gain user interactivity. Due to the
discrete-time nature of programming, an approximation of the convolution integral is
needed. As an application of the convolution concept, echoes are removed from speech
recordings using this concept.

Numerical Approximation of Convolution

In this section, let us apply the LabVIEW MathScript function conv to compute the
convolution of two signals. One can choose various values of the time interval Δ to compute
numerical approximations to the convolution integral.

Convolution Example 1

In this example, use the function conv to compute the convolution of the signals
x(t) = exp(−at)u(t) and h(t) = exp(−bt)u(t)with u(t)representing a step function
starting at 0 for 0 ≤ t ≤ 8. Consider the following values of the approximation pulse width
or delta: Δ = 0.5,0.1,0.05,0.01,0.005,0.001. Mathematically, the convolution of h(t)and
x(t)is given by
Equation:

y(t) =
1

a − b
(e−bt − e−at)u(t)

Compare the approximation ŷ(nΔ)obtained via the function conv with the theoretical value
y(t)given by Equation (1). To better see the difference between the approximated ŷ(nΔ)and
the true ŷ(nΔ)values, display ŷ(t)and y(t) in the same graph.

Compute the mean squared error (MSE) between the true and approximated values using the
following equation:
Equation:

MSE =
1

N

N

∑
n=1

(y(nΔ) − ŷ(nΔ))2

where N = ⌊ T
Δ

⌋, T is an adjustable time duration expressed in seconds and the symbol ⌊.⌋

denotes the nearest integer. To begin with, set T = 8.

As you can see here, the main program is written as a .m file and placed inside LabVIEW as
a LabVIEW MathScript node by invoking Functions → Programming →Structures →
MathScript. The .m file can be typed in or copied and pasted into the LabVIEW MathScript
node. The inputs to this program consist of an approximation pulse width Δ, input exponent
powers aand b and a desired time duration T . To add these inputs, right-click on the border
of the LabVIEW MathScript node and click on the Add Input option as shown in [link].

After adding these inputs, create controls to allow one to alter the inputs interactively via the
front panel. By right-clicking on the border, add the outputs in a similar manner. An
important consideration is the selection of the output data type. Set the outputs to consist of
MSE, actual or true convolution output y_ac and approximated convolution output y. The
first output is a scalar quantity while the other two are one-dimensional vectors. The output
data types should be specified by right-clicking on the outputs and selecting the Choose
Data Type option (see [link]).

(a) Adding Inputs, (b) Creating Controls

Next write the following .m file textual code inside the LabVIEW MathScript node:

t=0:Delta:8;

Lt=length(t);

x1=exp(-a*t);

x2=exp(-b*t);

(a) Adding Outputs, (b) Choosing Data Types

y=Delta*conv(x1,x2);

y_ac=1/(a-b)*(exp(-b*t)-exp(-a*t));

MSE=sum((y(1:Lt)-y_ac).^2)/Lt

With this code, a time vector t is generated by taking a time interval of Delta for 8 seconds.
Convolve the two input signals, x1 and x2, using the function conv. Compute the actual
output y_ac using Equation (1). Measure the length of the time vector and input vectors by
using the command length(t). The convolution output vector y has a different size (if two
input vectors m and n are convolved, the output vector size is m+n-1). Thus, to keep the size
the same, use a portion of the output corresponding to y(1:Lt) during the error calculation.

Use a waveform graph to show the waveforms. With the function Build Waveform
(Functions → Programming → Waveforms → Build Waveforms), one can show the
waveforms across time. Connect the time interval Delta to the input dt of this function to
display the waveforms along the time axis (in seconds).

Merge together and display the true and approximated outputs in the same graph using the
function Merge Signal (Functions → Express → Sig Manip → Merge Signals). Configure
the properties of the waveform graph as shown in [link].

[link] illustrates the completed block diagram of the numerical convolution.

[link] shows the corresponding front panel, which can be used to change parameters. Adjust
the input exponent powers and approximation pulse-width Delta to see the effect on the
MSE.

Waveform Graph Properties Dialog Box

Block Diagram of the Convolution Example

Convolution Example 2

Next, consider the convolution of the two signals x(t) = exp(−2t)u(t)and
h(t) = rect(t−2

2
) for , where u(t)denotes a step function at time 0 and rect a rectangular

function defined as
Equation:

rect(t) = {

Let Δ = 0.01. [link] shows the block diagram for this second convolution example. Again,
the .m file textual code is placed inside a LabVIEW MathScript node with the appropriate
inputs and outputs.

Front Panel of the Convolution Example

1 −0.5 ≤ t < 0.5

0 otherwise

[link] illustrates the corresponding front panel where x(t), h(t) and x(t) ∗ h(t) are plotted
in different graphs. Convolution (∗) and equal (=)signs are placed between the graphs using
the LabVIEW function Decorations.

Block Diagram for the Convolution of Two Signals

Convolution Example 3

In this third example, compute the convolution of the signals shown in [link].

Front Panel for the Convolution of Two Signals

[link] shows the block diagram for this third convolution example and [link] the
corresponding front panel. The signals x1(t), x2(t) and x1(t) ∗ x2(t) are displayed in
different graphs.

Signals x1(t) and x2(t)

Block Diagram for the Convolution of Two Signals

Convolution Properties

In this part, examine the properties of convolution. [link] shows the block diagram to
examine the properties and [link] and [link] the corresponding front panel. Both sides of
equations are plotted in this front panel to verify the convolution properties. To display
different convolution properties within a limited screen area, use a Tab Control (Controls
→Modern→Containers→Tab Control) in the front panel.

Front Panel for the Convolution of Two Signals

Front Panel of Convolution Properties

Block Diagram of Convolution Properties

Linear Circuit Analysis Using Convolution

In this part, let us consider an application of convolution in analyzing RLC circuits to gain a
better understanding of the convolution concept. A linear circuit denotes a linear system,
which can be represented with its impulse response h(t), that is, its response to a unit
impulse input. The input to such a system can be considered to be a voltage v(t)and the
output to be the circuit current i(t). See [link].

Tabs Showing Convolution Properties

For a simple RC series circuit shown in [link], the impulse response is given by [link] ,
Equation:

h(t) =
1

RC
exp(−

1

RC
t)

which can be obtained for any specified values of R and C. When an input voltage v(t)
(either DC or AC) is applied to the system, the circuit current i(t) can be obtained by simply
convolving the system impulse response with the input voltage, that is
Equation:

i(t) = h(t) ∗ v(t)

Similarly, for the simple RL series circuit shown in [link], the impulse response is given by
[link] ,
Equation:

h(t) =
R

L
exp(−

R

L
t)

Impulse Response Representation
of a Linear Circuit

RC Circuit

When an input voltage v(t) is applied to the system, the circuit current i(t) can be obtained
by computing the convolution integral.

[link] shows the block diagram of this linear system and [link] the corresponding front panel.
From the front panel, one can control the system type (RL or RC), input voltage type (DC or
AC) and input voltage amplitude. One can also observe the system response by changing R,
L and C values. Three graphs are used to display the input voltage v(t), impulse response of
the circuit h(t) and circuit current i(t).

RL Circuit

Block Diagram of the Linear Circuit Application

Lab Exercises

Exercise:

Problem: Echo Cancellation

Front Panel of the Linear Circuit Application

In this exercise, consider the problem of removing an echo from a recording of a speech
signal. The LabVIEW MathScript function sound() or the function Play Waveform
in LabVIEW can be used to play back the speech recording. To begin, load the .m file
echo_1.wav provided on the book website by using the function
wavread(‘filename’). This speech file was recorded at the sampling rate of 8
kHz, which can be played back through the computer speakers by typing

>> sound(y)

You should be able to hear the sound with an echo. If the LabVIEW function Play
Waveform(Functions → Programming → Graphics & Sound → Sound→
Output→ Play Waveform) is used to play the sound, you first need to build a
waveform based on the loaded data and the time interval dt = 1/8000 because this
speech was recorded using an 8 kHz sampling rate. Connect the waveform to the
function Play Waveform.

An echo is produced when the signal (speech, in this case) is reflected off a non-
absorbing surface like a wall. What is heard is the original signal superimposed on the
signal reflected off the wall (echo). Because the speech is partially absorbed by the
wall, it decreases in amplitude. It is also delayed. The echoed signal can be modeled as
ax(t − τ)where a < 1 and τ denotes the echo delay. Thus, one can represent the
speech signal plus the echoed signal as [7]
Equation:

y(t) = x(t) + ax(t − τ)

What is heard is y(t). In many applications, it is important to recover x(t) – the
original, echo-free signal – from y(t).

Method 1

In this method, remove the echo using deconvolution. Rewrite Equation (7) as follows
[7]:
Equation:

y[nΔ] = x[nΔ] + ax[(n − N)Δ] = x[nΔ] ∗ (δ[nΔ] + aδ[n − N]Δ) = x[nΔ] ∗ h[nΔ]

The echoed signal is the convolution of the original signal x(nΔ) and the signal
h(nΔ). Use the LabVIEW MathScript function deconv(y,h) to recover the
original signal.

Method 2

An alternative way of removing the echo is to run the echoed signal through the
following system:
Equation:

z[nΔ] = y[nΔ] − az[(n − N)Δ]

Assume that z[nΔ] = 0for n < 0. Implement the above system for different values of
a and N .

Display and play back the echoed signal and the echo-free signal using both of the
above methods. Specify the parameters aand Nas controls. Try to measure the proper
values of aand Nby the autocorrelation method described below.

The autocorrelation of a signal can be described by the convolution of a signal with its
mirror. That is,
Equation:

Rxx[n] = x[n] ∗ x[−n]

Use the autocorrelation of the output signal (echo-free signal) to estimate the delay time
(N) and the amplitude of the echo (a). For different values of Nand a, observe the
autocorrelation output. To have an echo-free signal, the side lobes of the autocorrelation
should be quite low, as shown in [link].

Autocorrelation Function of a Signal: (a) Echo Is Not Removed
Completely; (b) Echo Is Removed

[link] shows a typical front panel for this exercise. It is not necessary to obtain the same
front panel but there should be controls for a and N as well as graphs to observe the
echoed signal, echo-free signal and autocorrelation function of the echo-free signal.

Solution:

Insert Solution Text Here

Exercise:

Problem: Noise Reduction Using Mean Filtering

The idea of mean filtering is simply to replace each value in a signal with the mean
(average) value of its neighbors. A mean filter is widely used for noise reduction.

Start by adding some random noise to a signal (use the file echo_1.wav or any other
speech data file). Then, use mean filtering to reduce the introduced noise. More
specifically, take the following steps:

Front Panel for the Echo Cancellation System

1. Normalize the signal values in the range [0 1].
2. Add random noise to the signal by using the function randn. Set the noise level

as a control.
3. Convolve the noise-added signal with a mean filter. This filter can be designed by

taking an odd number of ones and dividing by the size. For example, a 1 × 3 size
mean filter is given by [1/3 1/3 1/3] and a 1 × 5size mean filter by [1/5 1/5 1/5 1/5
1/5]. Set the size of the mean filter as an odd number control (3, 5 or 7, for
example).

Solution:

Insert Solution Text Here

Exercise:

Problem: Impulse Noise Reduction Using Median Filtering

A median filter is a non-linear filter that replaces a data value with the median of the
values within a neighboring window. For example, the median value for this data
stream [2 5 3 11 4] is 4. This type of filter is often used to remove impulse noise. Use
the file echo_1.wav or any other speech data file and take the following steps:

1. Normalize the signal values in the range [0 1].
2. Randomly add impulse noise to the signal by using the LabVIEW MathScript

function randperm. Set the noise density as a control.
3. Find the median values of neighboring data using the function median and

replace the original value with the median value. Set the number of neighboring
values as an odd number control (3, 5 or 7, for example).

Solution:

Insert Solution Text Here

Fourier Series

Background

A periodic signal x(t)can be expressed by an exponential Fourier series as
follows:
Equation:

x(t) =
∞

∑
n=−∞

cnej
2πnt

T

where T indicates the period of the signal and cn’s are called Fourier series
coefficients, which, in general, are complex. Obtain these coefficients by
performing the following integration
Equation:

cn =
1

T
∫

T

x(t)e−j
2πnt

T dt

which possesses the following symmetry properties
Equation:

∣ c−n ∣=∣ cn ∣

Equation:

∠c−n = −∠cn

where the symbol ∣ . ∣ denotes magnitude and ∠ phase. Magnitudes of the
coefficients possess even symmetry and their phases odd symmetry.

A periodic signal x(t) can also be represented by a trigonometric Fourier
series as follows:
Equation:

x(t) = a0 +
∞

∑
n=1

ancos(
2πnt

T
) + bnsin(

2πnt

T
)

where
Equation:

a0 =
1

T
∫

T

x(t)dt

Equation:

an =
2

T
∫

T

x(t)cos(
2πnt

T
)dt

Equation:

bn =
2

T
∫

T

x(t)sin(
2πnt

T
)dt

The relationships between the trigonometric series and the exponential
series coefficients are given by
Equation:

a0 = c0

Equation:

an = 2Re{cn}

Equation:

bn = −2Im{cn}

Equation:

cn =
1

2
(an − jbn)

where Re and Imdenote the real and imaginary parts, respectively.

According to the Parseval’s theorem, the average power in the signal x(t) is
related to the Fourier series coefficients cn’s, as indicated below
Equation:

1

T
∫

T

∣ x(t) ∣
2
dt =

∞

∑
n=−∞

∣ cn ∣
2

More theoretical details of Fourier series are available in signals and
systems textbooks [link] - [link] .

Fourier Series Numerical Computation

Fourier series coefficients are often computed numerically – in particular,
when an analytic expression for x(t) is not available or the integration in
[link] - [link] is difficult to perform. By approximating the integrals in
[link] - [link] with a summation of rectangular strips, each of width Δt, one
can write
Equation:

a0 =
1

M

M

∑
m=1

x(mΔt)

Equation:

an =
2

M

M

∑
m=1

x(mΔt)cos(
2πmn

M
)

Equation:

bn =
2

M

M

∑
m=1

x(mΔt)sin(
2πmn

M
)

where x(mΔt) are M equally spaced data points representing x(t) over a
single period T , and Δt denotes the interval between data points such that
Δt = T

M

Similarly, by approximating the integrals in [link] with a summation of
rectangular strips, each of width Δt, one can write
Equation:

cn =
1

M

M

∑
m=M

x(mΔt)exp(
j2πmn

M
)

Lab 4: Fourier Series and Its Applications

In this lab, we examine the representation of periodic signals based on Fourier series.
Periodic signals can be represented by a linear combination of an infinite sum of sine
waves, as expressed by the trigonometric Fourier series representation.Periodic signals
can also be represented by an infinite sum of harmonically related complex exponentials,
as expressed by the exponential Fourier series representation. In this lab, we analyze both
of these series representations. In particular, we focus on how to compute Fourier series
coefficients numerically.

Fourier Series Signal Decomposition and Reconstruction

This example helps one to gain an understanding of Fourier series decomposition and
reconstruction for periodic signals. The first step involves estimating x(mΔt) which is a
numerical approximation of the analog input signal. Though programming environments
deploy discrete values internally, we can obtain a close analog approximation of a
continuous-time signal by using a very small Δt. That is to say, for all practical purposes,
when Δt is taken to be very small, we get the analog representation or simulation of the
signal. In this example, create four input signals using the listed LabVIEW MathScript
functions in Table 1.

LabVIEW MathScript Functions for Generating Various Waveforms or Signals

Waveform
type LabVIEW MathScript function

Square wave square(T), T denotes period

Triangular
wave sawtooth(T,Width), Width=0.5

Sawtooth
wave sawtooth(T,Width), Width=0

Half wave
rectified sine
wave

{ , f = 1/Tdenotes

frequencyHalf period is sine wave and the other half is made zero

sin(2 ∗ pi ∗ f ∗ t) < T/2

0

for 0 ≤ t

for T/2 ≤ t < T

Use a switch structure to select different types of input waveforms. Set the switch
parameter w as the input and connect it to an Enum Control(Controls → Modern →
Ring & Enum → Enum). Edit the Enum Control items to include all the waveform
types.

Set Amplitude of input (A), Period of input (T) and Number of Fourier coefficients (N) as
control parameters. Determine Fourier coefficients a0,anand bn and reconstruct the signal
from its Fourier coefficients using equations provided in Chapter 4. Determine the error
between the input and the reconstructed signal by simply taking the absolute values of
x(t) − x̂(t)via the LabVIEW MathScript function abs. Finally, determine the maximum
and average errors by using the functions max and sum. [link] shows the completed block
diagram of the Fourier series signal decomposition and reconstruction system.

Display the input signal using a waveform graph. Before displaying the graph, configure
it using the function Build Waveform(Functions → Programming → Waveforms →
Build Waveforms). Also display the Fourier coefficients, reconstructed signal and error
in the waveform graph, and place several numerical indicators to show the values of the
Fourier coefficients, maximum error and average error.

[link] and [link] illustrate the front panel of the Fourier series signal decomposition and
reconstruction system, respectively. To display all the outputs within a limited screen area,
use a Tab Control(Controls → Modern → Containers → Tab Control) in the front
panel. Here the outputs are arranged in two different tabs: Fourier Series and Signal
Reconstruction.

Block Diagram of Fourier Series Signal Decomposition and
Reconstruction Example

Front Panel of Fourier Series Signal Decomposition and
Reconstruction Example (Fourier Series Tab)

Linear Circuit Analysis Using Trigonometric Fourier Series

Front Panel of Fourier Series Signal Decomposition and
Reconstruction Example (Signal Reconstruction Tab)

In this example, let us perform electrical circuit analysis using the trigonometric Fourier
series. The ability to decompose any periodic signal into a number of sine waves makes
the Fourier series a powerful tool in electrical circuit analysis. The response of a circuit
component when a sinusoidal input is applied to its terminals is well-known in circuit
analysis. Thus, to obtain the response to any periodic signal, one can decompose the
signal into sine waves and perform a linear superposition of the sine waves.

Consider a simple RC circuit excited by a periodic input signal as shown in [link].

The block diagram of this linear circuit or system is shown in [link]. Determine the
Fourier series coefficients of the input voltage signal as discussed in the previous
example. Because the Fourier series involves the sum of sinusoids, phasor analysis can be
used to obtain the output voltage (vc). Let n represent the number of terms in the Fourier
series. By using the voltage divider rule, the output voltage (vc) can be expressed as
[link],
Equation:

vcn
=

1/(jnωC)

R + 1/(jnωC)
vinn

Because the sine and cosine components of the input voltage are known, one can easily
determine the output by adding the individual output components because the circuit is
linear. Determine each output voltage component by using [link].

[link] and [link] show the front panel of this system for its two tabs. The magnitude and
phase of the sine and cosine components are shown in the front panel separately.
Furthermore, the tab control is used to show the Fourier series and system output
separately.

RC Series Circuit with Periodic
Input Voltage

Block Diagram of Circuit Analysis with Trigonometric Fourier
Series

Front Panel of Circuit Analysis with Trigonometric Fourier Series
(Fourier Series Tab)

Lab Exercises

Front Panel of Circuit Analysis with Trigonometric Fourier Series
(System Output Tab)

Exercise:

Problem: RL Circuit Analysis

Build a hybrid VI to analyze the RL circuit shown in [link] using Fourier series.

The input voltage for the circuit is to be either a square wave or a triangular wave
with a period T=2 seconds.

Compute and display the following:

1. The Fourier series coefficients of the input voltage v(t),
2. the current i(t),
3. the RMS (root mean square) value of v(t) using (i) the original waveform and

(ii) its Fourier series coefficients (compare the outcomes),
4. the average power Pavdelivered by the source.

Hints:

RMS Value

The RMS value of a periodic function v(t)with period T is given by
Equation:

VRMS =
1

T
∫

T

v2dt

The RMS value of a waveform consisting of sinusoids with different frequencies is
equal to the square root of the sum of the squares of the RMS value of each sinusoid.
If a waveform is represented by the following Fourier series
Equation:

RL Series Circuit with Periodic
Input Voltage

⎷

v(t) = V0 + V1sin(ω1t ± φ1) + V2sin(ω2t ± φ2) + ... + VN sin(ωN t ± φN)

then, the RMS value VRMSis given by
Equation:

VRMS = √V02 + (
V1

√2
)

2

+ (
V2

√2
)

2

+ ... + (
VN

√2
)

2

Average power

The average power of the Fourier series can be expressed as
Equation:

Pav = V0I0 + V1RMSI1RMScosφ1 + V2RMSI2RMScosφ2 + ...

Solution:

Insert Solution Text Here

Exercise:

Problem: Doppler Effect

The Doppler effect denotes the change in frequency and wavelength of a wave as
perceived by an observer moving relative to the wave source. The Doppler effect can
be demonstrated via time scaling of Fourier series. The observer hears the siren of an
approaching emergency vehicle with different amplitudes and frequencies as
compared to the original signal. As the vehicle passes by, the observer hears another
amplitude and frequency. The reason for the amplitude change (increased loudness)
is because of the proximity of the vehicle. The closer it is, the louder it gets. The
reason for frequency (pitch) change is due to the Doppler effect. As the vehicle
approaches, each successive compression of the air caused by the siren occurs a little
closer than the last one, and the opposite happens when the vehicle passes by. The
result is the scaling of the original signal in the time domain, which changes its
frequency. When the vehicle approaches, the scaling factor is greater than 1,
resulting in a higher frequency, and, when it passes by, the scaling factor is less than
1, resulting in a lower frequency. More theoretical aspects of this phenomenon are
covered in reference [link].

Define the original siren signal as x(t). When the vehicle approaches, one can
describe the signal by
Equation:

x1(t) = B1(t)x(at)

where B1(t)is an increasing function of time (assuming a linear increment with
time) and ais the scaling factor having a value greater than 1. When the vehicle
passes by, one can describe the signal by
Equation:

x2(t) = B2(t)x(bt)

where B2(t)is a decreasing function of time (assuming a linear decrement with time)
and bis the scaling factor having a value less than 1.

First, generate a signal and create an upscale and a downscale version of it. Observe
the Fourier series for all the signals. Set the amplitude and frequency of the original
signal and the scaling factors as controls. In addition, play the sounds using the
LabVIEW Play Waveform function. [link] shows a possible front panel for this type
of system.

Solution:

Insert Solution Text Here

Exercise:

Problem: Synthesis of Electronic Music

In electronic music instruments, sound generation is implemented via synthesis.
Different types of synthesis techniques such as additive synthesis, subtractive
synthesis and frequency modulation (FM) synthesis are used to create audio
waveforms. The simplest type of synthesis is additive synthesis, where a composite
waveform is created by summing sine wave components, which is basically the

Front Panel of a Doppler Effect System

inverse Fourier series operation. However, in practice, to create a music sound with
rich harmonics requires adding a large number of sine waves, which makes the
approach inefficient computationally. To avoid adding a large number of sine waves,
modulation with addition is used. This exercise involves the design of algorithms
used in the Yamaha DX7 music synthesizer, which debuted in 1983 as the first
commercially available digital synthesizer.

The primary functional circuit in DX7 consists of a digital sine wave oscillator plus a
digital envelope generator. Let us use additive synthesis and frequency modulation to
achieve synthesis with six configurable operators. When one adds together the output
of some operators, an additive synthesis occurs, and when one connects the output of
one operator to the input of another operator, a modulation occurs.

In terms of block diagrams, the additive synthesis of a waveform with four operators
is illustrated in [link].

The output for the combination shown in [link] can be written as
Equation:

y(t) = A1sin(ω1t) + A2sin(ω2t) + A3sin(ω3t) + A4sin(ω4t)

[link] shows the FM synthesis of a waveform with two operators.

Additive
Synthesis

FM
Synthesi

s

The output for the combination shown in this figure can be written as
Equation:

y(t) = A1sin(ω1t + A2sin(ω2t))

Other than addition and frequency modulation, one can use feedback or self-
modulation in DX7, which involves wrapping back and using the output of an
operator to modulate the input of the same operator as shown in [link].

The corresponding equation is
Equation:

y(t) = A1sin(ω1t + y(t))

Different arrangements of operators create different algorithms. [link] displays the
diagram of an algorithm.

Self-
Modulatio

n

Diagram of an
Algorithm

And the output for this algorithm can be written as
Equation:

y(t) = A1sin(ω1t + A2sin(ω2t)) + A3sin(ω3t + A4sin(ω4t + A5sin(ω5t + y6(t))))

With DX7, one can choose from 32 different algorithms. As one moves from
algorithm No. 32 to algorithm No. 1, the harmonics complexity increases. In
algorithm No. 32, all six operators are combined using additive synthesis with a self
modulator generating the smallest number of harmonics. [link] shows the diagram
for all 32 combinations of operators. More details on music synthesis and the
Yamaha DX7 synthesizer can be found in the [link]-[link].

Next, explore designing a system with six operators and set their amplitude and
frequency as controls. By combining these operators, construct any three algorithms,
one from the lower side (for example, algorithm No. 3), one from the middle side
(for example, algorithm No. 17) and the final one from the upper side (for example,
algorithm No. 30). Observe the output waves in the time and frequency domains
(find the corresponding Fourier series).

Solution:

32 Algorithms in the Yamaha DX7

Insert Solution Text Here

Continuous-Time Fourier Transform

In this lab, we learn how to compute the continuous-time Fourier transform
(CTFT), normally referred to as Fourier transform, numerically and
examine its properties. Also, we explore noise cancellation and amplitude
modulation as applications of Fourier transform.

Properties of CTFT

The continuous-time Fourier transform (CTFT) (commonly known as
Fourier transform) of an aperiodic signal x(t) is given by
Equation:

X(ω) =

∞

∫

−∞

x(t)e−jωtdt

The signal x(t) can be recovered from X(ω) via this inverse transform
equation
Equation:

x(t) =
1

2π

∞

∫

−∞

X(ω)ejωtdω

Some of the properties of CTFT are listed in [link].

Properties Time domain Frequency domain

Time shift x(t − t0) X(ω)e−jωt0

Properties of CTFT

Time scaling x(at) 1
∣a∣
X(ω

a
)

Linearity a1x1(t) + a2x2(t) a1X1(ω) + a2X2(ω)

Time convolution x(t) ∗ h(t) X(ω)H(ω)

Frequency
convolution x(t)h(t) X(ω) ∗ H(ω)

Refer to signals and systems textbooks [link] - [link] for more theoretical
details on this transform.

Numerical Approximations to CTFT

Assuming that the signal x(t) is zero for t<0 and t ≥ T , we can
approximate the CTFT integration in Equation (1) as follows:
Equation:

∞

∫

−∞

x(t)e−jωtdt =

T

∫

0

x(t)e−jωtdt ≈
N−1

∑
n=0

x(nτ)e−jωnττ

where T = Nτ and N is an integer. For sufficiently small τ , the above
summation provides a close approximation to the CTFT integral. The
summation ∑N−1

n=0 x(nτ)e−jωnτ is widely used in digital signal processing
(DSP), and both LabVIEW MathScript and LabVIEW have a built-in
function for it called fft. In a .m file, if N samples x(nτ) are stored in a
vector x, then the function call

>>xw=tau*fft (x)

calculates
Equation:

where
Equation:

ωk = {

with N assumed to be even. The fft function returns the positive
frequency samples before the negative frequency samples. To place the
frequency samples in the right order, use the function fftshift as
indicated below:

>>xw=fftshift(tau*fft (x))

Note that X(ω) is a vector (actually, a complex vector) of dimension N.
X(ω) is complex in general despite the fact that x(t) is real-valued. The
magnitude of X(ω) can be computed using the function abs and the phase
of X(ω) using the function angle.

Xω(k + 1) = τ∑N−1
n=0 x(nτ)e−jωknτ

≈ X(ωk)

0 ≤ k ≤ N − 1

2πk
Nτ

0 ≤ k ≤ N
2

2πk
Nτ

− 2π
τ

N
2 + 1 ≤ k ≤ N − 1

Lab 5: CTFT and Its Applications

Properties of CTFT

The example covered in this section provides an implementation of CTFT
and its properties. As mentioned earlier, programming environments can
generate and work with only discrete values arranged in arrays. Thus, to get
a continuous-time representation of a signal, use a very small value of time
increment dt. For example, dt=0.001 means there are 1000 discrete samples
in 1 second, which provides a good approximation to represent a low-
frequency signal. However, when working with very high-frequency
signals, one should decrease the value of dt further to ensure there are
enough samples to represent the signal in a continuous fashion over a
specified duration.

[link] shows the example of the completed block diagram for the CTFT (or
FT) and its properties. This particular VI is capable of finding the FT of a
rectangular and a triangular pulse. Create two input signals using the
LabVIEW MathScript functions ones and zeros, which are combined in the
time domain. Use a case structure to select the combination method (linear
combination, convolution or multiplication) and the parameter mode1 to
serve as an input that is connected to an Enum Control(Controls →
Modern→Ring & Enum →Enum). Use parameters mode3 and mode4,
which are connected to two Enum controls, to select the input signal type.
Also set Pulse width, Time shift and Time scale as control parameters. Pulse
width controls the number of ones in the pulse, which is used to increase or
decrease the pulse width. Time shift adds zeros before the pulse to provide a
time delay. Time scale is set to be multiplied with the time increment (dt) to
ensure appropriate scaling of the pulse. Use the LabVIEW MathScript
function fft to determine the FT of the continuous signal. Combine the
signals in the frequency domain and control the combination method (linear
combination, convolution or multiplication) via the parameter mode2.
Compute the FT of the time domain combinations and the inverse FT of the
frequency domain combinations using the functions fft and ifft. To
shift the zero-frequency component to the center of the spectrum, use the
LabVIEW MathScript function fftshift. Finally, determine the
magnitude and phase of the FT using the functions abs and angle,

respectively. Display the input signals and their combinations using a Build
Waveform function (Functions → Programming →Waveforms →Build
Waveforms) and a Waveform Graph(Controls →Modern →Graph
→Waveform Graph). Also, display the spectrum magnitude and phase
using a waveform graph.

[link] and [link] shows the front panel of the above system. Use controls
named Pulse width, Time shift and Time scaling to change the waveforms
in the time domain. Three waveform graphs for Input signal, Magnitude of
FT and Phase of FT also appear in the front panel shown. With the specified
front panel controls, one can easily verify CTFT properties. To begin with,
run the program in continuous mode using the Run Continuously button.

Block Diagram of CTFT and Its Properties

Front Panel of CTFT and Its Properties: Input Signals Tab

Varying Pulse Width

Keep the default values of Time shift (=0) and Time scaling (=1) and vary
the Pulse width of the rectangular pulse. First, set the value of the Pulse
width to its minimum value (=0.01) and then increase it. Observe that
increasing the Pulse width in the time domain decrements the width in the
frequency domain (see [link]). When the Pulse width is set to its maximum
value (=1) in the frequency domain, only one value can be seen at the center
frequency indicating the signal is of DC type (refer to Properties of CTFT
section of Chapter 5).

Front Panel of CTFT and Its Properties: Combination of Input
Signals Tab

Time Shift

Next, for a fixed pulse width, vary the time shift. Observe that the phase
spectrum changes but the magnitude spectrum remains the same. If the
signal x(t) is shifted by a constant t0 , its FT magnitude does not change,
but the term −ωt0 gets added to its phase angle. This verifies the time-
shifting property of FT as stated in Properties of CTFT section of Chapter 5
(see [link]).

Magnitude Spectrum for Different Pulse Widths: (a) 0.01, (b)
0.2, (c) 0.5, (d) 1

Time Scaling

Observe that increasing the control Time scaling makes the spectrum wider.
This indicates that compressing the signal in the time domain leads to
expansion in the frequency domain. This verifies the time-scaling property
of FT as stated in Properties of CTFT section of Chapter 5 (see [link]).

Magnitude and Phase Spectrum for Different Time Shifts: (a)
0, (b) 0.2, (c) 0.5, (d) 0.7

Linearity

Here, combine two signals to examine the linearity property of FT. Select
Linear Combination for the Time domain and Frequency domain
combination method. This selection combines two time signals, x1(t)and
x2(t), linearly with the scaling factors, a1and a2, producing a new signal,
a1x1(t) + a2x2(t). [link] displays the FT of this linear combination. The
linear combination in the frequency domain produces a new signal,
a1X1(ω) + a2X2(ω). [link] also displays the inverse FT of this
combination. Observe that both combinations produce the same result in the
time and frequency domains, as indicated by the linearity property stated in
Properties of CTFT section of Chapter 5.

Magnitude Spectrum for Different Time Scalings: (a) 1, (b) 2,
(c) 3, (d) 4

Verifying the Linearity Property of CTFT

Time Convolution

In this part, convolve two signals in the time domain to examine the time-
convolution property of FT. Select Convolution for Time domain and
Multiplication for Frequency domain. This selection produces and displays
a new signal, x1(t) ∗ x2(t), by convolving the two time signals x1(t)and
x2(t). Multiplication in the frequency domain produces a new signal,
X1(ω)X2(ω). The inverse FT of this multiplied signal is also displayed on
the right. Note that both combinations produce the same outcome in the
time and frequency domains. This verifies the time-convolution property
stated in the Properties of CTFT section of Chapter 5 (see [link]).

Verifying the Time-Convolution Property of CTFT

Frequency Convolution

Convolve two signals in the frequency domain to examine the frequency-
convolution property of FT. Select Convolution for Frequency domain and
Multiplication for Time domain. This selection convolves the two time
signals X1(ω)and X2(ω) to produce a new signal, X1(ω) ∗ X2(ω). The
inverse FT of the convolved signal is displayed. Multiplication in Time
domain produces a new signal, x1(t)x2(t). The FT of this multiplied signal
is also displayed. Note that both combinations produce the same outcome in
the time and frequency domains. This verifies the frequency-convolution
property stated in the Properties of CTFT section of Chapter 5 (see [link]).

Noise Reduction

Verifying the Frequency-Convolution Property of CTFT

When a signal passes through a channel, it normally gets corrupted by
channel noise. Various electronic components used in a transmitter or
receiver may also cause additional noise. Noise reduction is an important
aspect of any signal processing system. Lab 7 features noise reduction
techniques using digital and analog filters. This section presents a simple
technique to reduce high-frequency noise.

[link] shows the completed block diagram of a noise reduction system.
Consider a speech signal sampled at 8 kHz. Add some high-frequency noise
to this signal and then remove the high-frequency components in the
frequency domain. Finally, move the signal back into the time domain using
the inverse FT. Use the LabVIEW MathScript function wavread to read a
wave file specified by the string Path and return the sampled data at a
specified sampling rate. A String Control(Controls → Modern →String
& Path →String Control) can be added to the input Path to provide the
path name for the speech data file. Use two more controls named Time
frame width and Frame number to extract a segment of the speech signal
before computing Fourier transform. Add together three sine and cosine
waves with frequencies of 3.5, 3 and 2.8 kHz to create a high-frequency
noise. Then add a scaled version of the noise signal to the signal with the
Scaling parameter set as a control. Compute the FT of the Noise added
signal using the function fft.

To remove the high-frequency noise components, use a simple lowpass
filter by removing the frequency components over a certain threshold (50
percent, for example). After removing the high-frequency components,
transform the signal back into the time domain using the function ifft. To
get a display of the absolute and centered frequency spectrum, use the
functions abs and fftshift. The signals are displayed in the time domain
using the functions Build Waveform and Waveform Graph. To be able to
hear the speech signals, use the function Play Waveform(Functions
→Programming →Graphics & Sound →Sound→Output →Play
Waveform). Connect the time domain signals to this function via the while
loop structure. Connect a Boolean control(Controls →Modern →Boolean
→Push Button) to the loop control, which acts as a play switch for the
sound signal. The signals are also displayed in the frequency domain using
the functions Bundle(Functions →Programming →Cluster, Class &

Variant → Bundle) and XY Graph(Controls →Modern →Graphs →XY
Graph).

Block Diagram of a Noise Reduction System

[link] shows the front panel of the system. Inside the Data File Path control,
the location of the speech data file is specified. Three graphs for the
Original signal, Noise added signal and Noise reduced signal are shown in
both the time and frequency domains. Use the noise level control to allow
setting the amount of noise added to the original signal. After running the
program, click on the Play button next to each signal. Hear the Original
Signal and the Noise added signal. Notice that an unpleasant high-pitched
noise gets added to the signal. If the noise level is set more than 0.5, the
Original Signal becomes very difficult to hear. Next, hear the Noise reduced
signal, which is similar to the Original Signal. The Noise reduced signal is
not exactly the same as the Original Signal because some high-frequency
components are also removed along with the noise.

Amplitude Modulation

In this section, we examine amplitude modulation and demodulation
applications. For transmission purposes, signals are often modulated with a
high-frequency carrier. A typical amplitude modulated signal can be
described by
Equation:

x(t) = xm(t)cos(2πf ct)

where xm(t)is called the message waveform, which contains the data of
interest, and fcis the carrier wave frequency. Using the fact that
Equation:

cos(2πf ct) =
1

2
(e2πf ct + e−2πf ct) =

1

2
(eωct + e−ωct)

and the frequency shift property of CTFT, one can easily derive the CTFT
of to be
Equation:

X(ω) =
1

2
(Xm(ω − ωc) + Xm(ω + ωc))

At the receiver, some noisy version of this transmitted signal is received.
The signal information resides in the envelope of the modulated signal, and
thus an envelope detector can be used to recover the message signal.

[link] shows the completed block diagram of the amplitude modulation and
demodulation system. In this example, use the combination of two sine

Front Panel of a Noise Reduction System

waves to serve as a message signal. The signal is modulated with a high-
frequency carrier, and some random noise is added. The frequency domain
versions of the signals can also be observed using the function fft. As
stated in Equation (3), the CTFT of the modulated signal is merely some
frequency-shifted version of the original signal. In single sideband (SSB)
modulation, only one side of the spectrum is transmitted due to symmetry.
That is, just one side of the spectrum is taken and converted into a time
signal using the function ifft.

[link] shows the completed front panel of this system. The Message signal,
Modulated signal, Received signal (modulated signal with additional noise)
and Demodulated signal are displayed in four waveform graphs in both the
time and frequency domains.

Block Diagram of an Amplitude Modulation and Demodulation
System

Front Panel of an Amplitude Modulation and Demodulation
System

Lab Exercises

Exercise:

Problem: Circuit Analysis

Find and plot the frequency response (both magnitude and phase
spectrum) of each of the circuits shown in [link]. Set the values of R, L
and C as controls.

Solution:

Insert Solution Text Here

Exercise:

Problem: Morse Coding

Consider a message containing some hidden information. Furthermore,
to make it interesting, suppose the message contains a name. Assume
that the message was coded using the amplitude modulation scheme as
follows [link]:
Equation:

x(t) = xm1(t)cos(2πf1t) + xm2(t)cos(2πf2t) + xm3(t)cos(2πf3t)

where xm1(t),xm2(t) and xm3(t) are the (message) signals containing
the three letters of the name. More specifically, each of the signals,
xm1(t),xm2(t) and xm3(t), corresponds to a single letter of the
alphabet. These letters are encoded using the International Morse Code
as indicated below [7]:

Linear RLC Circuits

A . − H O − − − V ... −

B −... I .. P . − −. W . − −

C −. − . J . − − − Q − − . − X −.. −

D −.. K −. − R . − . Y −. − −

E . L . − .. S ... Z − − ..

F .. − . M − − T −

G − − . N −. U .. −

Now to encode the letter A, one needs only a dot followed by a dash.
That is, only two prototype signals are needed – one to represent the
dash and one to represent the dot. Thus, for instance, to represent the
letter A, set xm1(t) = d(t) + dash(t), where d(t) represents the dot
signal and dash(t) the dash signal. Similarly, to represent the letter O,
set xm1(t) = 3dash(t).

Find the prototype signals d(t) and dash(t) in the file morse.mat on
the book website. After loading the file morse.mat

>>load morse

the signals d(t) and dash(t)can be located in the vectors dot and dash,
respectively. The hidden signal, which is encoded, per Equation (4),
containing the letters of the name, is in the vector xt Let the three
modulation frequencies f1,f2and f3 be 20, 40 and 80 Hz, respectively.

• Using the amplitude modulation property of the CTFT, determine the
three possible letters and the hidden name. (Hint: Plot the CTFT of xt
Use the values of T and τau contained in the file.)

• Explain the strategy used to decode the message. Is the coding
technique ambiguous? That is, is there a one-to-one mapping between
the message waveforms (xm1(t),xm2(t),xm3(t))) and the alphabet
letters? Or can you find multiple letters that correspond to the same
message waveform?

Solution:

Insert Solution Text Here

Exercise:

Problem: Doppler Effect

The Doppler effect phenomenon was covered in a previous chapter. In
this exercise, let us examine the Doppler effect with a real sound wave
rather than a periodic signal. The wave file firetrucksiren.wav on the

book website contains a firetruck siren. Read the file using the
LabVIEW MathScript function wavread and produce its upscale and
downscale versions. Show the waves in the time and frequency
domains (find the CTFT). Furthermore, play the sounds using the
LabVIEW function Play Waveform. [link] shows a typical front panel
for this system.

Front Panel of Doppler Effect System

Solution:

Insert Solution Text Here

Exercise:

Problem: Diffraction of Light

The diffraction of light can be described as a Fourier transform [link].
Consider an opaque screen with a small slit being illuminated by a
normally incident uniform light wave, as shown in [link].

Considering that d>>πl12/λprovides a good approximation for any l1
in the slit, the electric field strength of the light striking the viewing
screen can be expressed as [link]
Equation:

E0(l0) = K
ej(2πd/λ)

jλd
ej(π/λd)l02

∞

∫

−∞

E1(l1)e−j(2π/λd)l0l1dl1

Diffraction of Light

where

E1= field strength at diffraction screen

E0 = field strength at viewing screen

K = constant of proportionality

λ= wavelength of light

The above integral is in fact Fourier transformation in a different
notation. One can write the field strength at the viewing screen as
[link]
Equation:

The intensity I(l0)of the light at the viewing screen is the square of the
magnitude of the field strength. That is,
Equation:

I(l0) = ∣ E0(l0) ∣
2

1. Plot the intensity of the light at the viewing screen. Set the slit
width to this range (0.5 to 5 mm), the wavelength of light λto this
range (300 to 800 nm), and the distance of the viewing screen dto
this range (10 to 200 m) as controls. Assume the constant of
proportionality is 10−3, and the electric field strength at the
diffraction screen is 1 V/m.

(t)

E1f→l0/λd

E0(l0) = K ej(2πd/λ)

jλd
ej(π/λd)l02 CTFT

2. Now replace the slit with two slits, each 0.1 mm in width,
separated by 1 mm (center-to-center) and centered on the optical
axis. Plot the intensity of light in the viewing screen by setting the
parameters in part (1) as controls.

Solution:

Insert Solution Text Here

Digital Signals and Their Transforms

In this lab, we learn how to compute the continuous-time Fourier transform
(CTFT), normally referred to as Fourier transform, numerically and
examine its properties. Also, we explore noise cancellation and amplitude
modulation as applications of Fourier transform.

In the previous labs, different mathematical transforms for processing
analog or continuous-time signals were covered. Now let us explore the
mathematical transforms for processing digital signals. Digital signals are
sampled (discrete-time) and quantized version of analog signals. The
conversion of analog-to-digital signals is implemented with an analog-to-
digital (A/D) converter, and the conversion of digital-to-analog signals is
implemented with a digital-to-analog (D/A) converter. In the first part of the
lab, we learn how to choose an appropriate sampling frequency to achieve a
proper analog-to-digital conversion. In the second part of the lab, we
examine the A/D and D/A processes.

Sampling and Aliasing

Sampling is the process of generating discrete-time samples from an analog
signal. First, it is helpful to mention the relationship between analog and
digital frequencies. Consider an analog sinusoidal signal
x(t) = Acos(ωt + φ). Sampling this signal at t = nTs, with the sampling
time interval of Ts, generates the discrete-time signal
Equation:

x[n] = Acos(ωnTs + φ) = Acos(θn + φ),

where θ = ωTs = 2πf
fs

 denotes digital frequency with units being radians
(as compared to analog frequency ω with units being radians/second).

The difference between analog and digital frequencies is more evident by
observing that the same discrete-time signal is obtained from different
continuous-time signals if the product ωTs remains the same. (An example
is shown in [link].) Likewise, different discrete-time signals are obtained

n = 0,1,2,...,

from the same analog or continuous-time signal when the sampling
frequency is changed. (An example is shown in [link].) In other words, both
the frequency of an analog signal f and the sampling frequency fs define
the digital frequency θof the corresponding digital signal.

Sampling of Two Different Analog Signals
Leading to the Same Digital Signal

It helps to understand the constraints associated with the above sampling
process by examining signals in the frequency domain. The Fourier
transform pairs for analog and digital signals are stated as

Fourier transform pairs for analog and digital signals

Fourier transform
pair for analog
signals

{

Fourier transform
pair for discrete
signals

{

Sampling of the Same Analog Signal
Leading to Two Different Digital Signals

X(jω) = ∫
∞

−∞ x(t)e−jωtdt

x(t) = 1
2π ∫

∞

−∞ X(jω)ejωtdω

X(ejθ) = ∑∞
n=−∞ x[n]e−jnθ

x[n] = 1
2π ∫

π

−π
X(ejθ)ejnθdθ

, θ = ωTs

As illustrated in [link], when an analog signal with a maximum bandwidth
of W (or a maximum frequency of fmax) is sampled at a rate of Ts = 1

fs
, its

corresponding frequency response is repeated every 2π radians, or fs. In
other words, the Fourier transform in the digital domain becomes a periodic
version of the Fourier transform in the analog domain. That is why, for
discrete signals, one is interested only in the frequency range [0,fs/2].

Therefore, to avoid any aliasing or distortion of the discrete signal
frequency content and to be able to recover or reconstruct the frequency
content of the original analog signal, we must have fs ≥ 2fmax. This is
known as the Nyquist rate. The sampling frequency should be at least twice
the highest frequency in the analog signal. Normally, before any digital
manipulation, a front-end anti-aliasing lowpass analog filter is used to limit
the highest frequency of the analog signal.

(a) Fourier Transform of a Continuous-Time Signal, (b) Its
Discrete-Time Version

Let us further examine the aliasing problem by considering an
undersampled sinusoid as depicted in [link] . In this figure, a 1 kHz sinusoid
is sampled at fs = 0.8kHz, which is less than the Nyquist rate of 2 kHz.
The dashed-line signal is a 200 Hz sinusoid passing through the same
sample points. Thus, at the sampling frequency of 0.8 kHz, the output of an
A/D converter is the same if one uses the 1 kHz or 200 Hz sinusoid as the
input signal. On the other hand, oversampling a signal provides a richer
description than that of the signal sampled at the Nyquist rate.

Quantization

An A/D converter has a finite number of bits (or resolution). As a result,
continuous amplitude values get represented or approximated by discrete
amplitude levels. The process of converting continuous into discrete
amplitude levels is called quantization. This approximation leads to errors
called quantization noise. The input/output characteristic of a 3-bit A/D
converter is shown in [link] to illustrate how analog voltage values are
approximated by discrete voltage levels.

Ambiguity Caused by Aliasing

Quantization interval depends on the number of quantization or resolution
levels, as illustrated in [link]. Clearly the amount of quantization noise
generated by an A/D converter depends on the size of the quantization
interval. More quantization bits translate into a narrower quantization
interval and, hence, into a lower amount of quantization noise.

Characteristic of a 3-Bit A/D Converter: (a) Input/Output
Transfer Function, (b) Additive Quantization Noise

Quantization Levels

In [link], the spacing Δ between two consecutive quantization levels
corresponds to one least significant bit (LSB). Usually, it is assumed that
quantization noise is signal-independent and is uniformly distributed over –
0.5 LSB and 0.5 LSB. [link] also shows the quantization noise of an analog
signal quantized by a 3-bit A/D converter and the corresponding bit stream.

A/D and D/A Conversions

Because it is not possible to have an actual analog signal within a computer
programming environment, an analog sinusoidal signal is often simulated
by sampling it at a very high sampling frequency. Consider the following
analog sine wave:
Equation:

x(t) = cos(2π1000t)

Sample this sine wave at 40 kHz to generate 0.125 seconds of x(t). Note
that the sampling interval, seconds, is very short, so x(t) appears as an
analog signal.

Sampling involves taking samples from an analog signal every seconds.
The above example generates a discrete signal x[n] by taking one sample
from the analog signal every seconds. To get a digital signal, apply
quantization to the discrete signal.

According to the Nyquist theorem, an analog signal z can be reconstructed
from its samples by using the following equation:

Quantization of an Analog Signal by a 3-Bit A/D Converter: (a)
Output Signal and Quantization Error, (b) Histogram of

Quantization Error, (c) Bit Stream

Equation:

z(t) =
∞

∑
k=−∞

z[kTs]sinc(
t − kTs

Ts

)

This reconstruction is based on the summations of shifted sinc (sinx/x)
functions. [link] illustrates the reconstruction of a sine wave from its
samples achieved in this manner.

It is difficult to generate sinc functions by electronic circuitry. That is why,
in practice, one uses an approximation of a sinc function. [link] shows an
approximation of a sinc function by a pulse, which is easy to realize in
electronic circuitry. In fact, the well-known sample and hold circuit
performs this approximation.

Reconstruction of an Analog Sine Wave Based
on its Samples, f= 125 Hz and fs= 1 kHz

DTFT and DFT

Fourier transformation pairs for analog and discrete signals are expressed in
[link]. Note that the discrete-time Fourier transform (DTFT) for discrete-
time signals is the counterpart to the continuous-time Fourier transform
(CTFT) for continuous-time signals. Also, the discrete Fourier transform
(DFT) is the counterpart to the Fourier series (FS) for continuous-time
signals as shown in [link] . [link] shows a list of these transformations and
their behavior in the time and frequency domains.

Fourier
series for
periodic

{ , where T denotes

period andω fundamental frequency

Approximation of a Sinc Function by a Pulse

Xk = 1
T
∫ T/2

−T/2 x(t)e−jω0ktdt

x(t) = ∑∞
k=−∞ Xke

jω0kt

0

Fourier series pairs for analog and digital signals

analog
signals

Discrete
Fourier
transform
(DFT) for
periodic
discrete
signals

{

Different Transformations for Continuous and Discrete Signals

Time domain Spectrum
characteristics

Transformation
type

Continuous
(periodic) Discrete FS

Continuous
(aperiodic) Continuous CTFT

Discrete (periodic) Discrete (periodic) DFT

Discrete
(aperiodic) Continuous (periodic) DTFT

X[k] = ∑N−1
n=0 x[n]e−j

2π
N

nk

x[n] = 1
N
∑N−1

k=0 X[k]ej
2π
N

nk

, k = 0,1,...,N − 1

, n = 0,1,...,N − 1

Lab 6: Analog-to-Digital Conversion, DTFT and DFT

Sampling, Aliasing, Quantization and Reconstruction

The example in this section addresses sampling, quantization, aliasing and
signal reconstruction concepts. [link] shows the completed block diagram
of this example, where the following four control parameters are linked to a
LabVIEW MathScript node:

Amplitude – to control the amplitude of an input sine wave

Phase – to control the phase of the input signal

Frequency – to control the frequency of the input signal

Sampling frequency – to control the sampling rate of the corresponding
discrete signal

Number of quantization levels – to control the number of quantization
levels of the corresponding digital signal

To simulate the analog signal via a .m file, consider a very small value of
time increment dt (dt = 0.001). To create a discrete signal, sample the
analog signal at a rate controlled by the sampling frequency. To simulate the
analog signal, use the textual statement xa=sin(2*pi*f*t), where t is
a vector with increment dt = 0.001. To simulate the discrete signal, use the
textual statement xd=sin(2*pi*f*n), where n is a vector with
increment dn. The ratio dn/dt indicates the number of samples skipped
during the sampling process. Again, the ratio of analog frequency to
sampling frequency is known as digital or normalized frequency. To convert
the discrete signal into a digital one, perform quantization using the
LabVIEW MathScript function round. Set the number of quantization
levels as a control.

To reconstruct the analog signal from the digital one, use a linear
interpolation technique via the LabVIEW MathScript function interp1.
The samples skipped during the sampling process can be recovered after the

interpolation. Finally, display the Original signal and the Reconstructed
signal in the same graph using the functions Build Waveform, Merge Signal
and Waveform Graph. Discrete waveform, Digital waveform, Analog
frequency, Digital frequency and Number of samples skipped in ADC are
also included in the front panel, shown in [link]. Use this VI to examine
proper signal sampling and reconstruction.

Block Diagram of Sampling, Aliasing, Quantization and
Reconstruction

Analog and Digital Frequency

Digital frequency (θ) is related to analog frequency (f) via the sampling
frequency, that is, θ = 2πf

fs
. Therefore, one can choose the sampling

frequency (fs) to increase the digital or normalized frequency of an analog
signal by lowering the number of samples.

Aliasing

Set the sampling frequency to fs = 100Hz and change the analog
frequency of the signal. Observe the output for fs = 10Hz and fs = 210Hz
(See [link] and [link]). The analog signals appear entirely different in these
two cases but the discrete signals are similar. For the second case, the
sampling frequency is less than twice that of the analog signal frequency.
This violates the Nyquist sampling rate leading to aliasing, which means
one does not know from which analog signal the digital signal is created.
Note the value of digital frequency is 0.1 radians for the first case and 2.1
radians for the second case. To prevent any aliasing, keep the digital
frequency less than 0.5 radians.

Front Panel of Sampling, Aliasing, Quantization and
Reconstruction

Analog and Discrete Waveforms with fs = 100 Hz and f = 10
Hz

Analog and Discrete Waveforms with fs = 100 Hz and f =
210 Hz

Quantization

Now change the Number of quantization levels for some fixed values of
Frequency and Sampling Frequency. As the number of quantization levels
is increased, the Digital waveform becomes smoother and a smaller amount
of quantization error or noise is generated.

Digital Waveform with Different Numbers of Quantization

Signal Reconstruction

Next, set the frequency f = 100Hz and vary the sampling frequency.
Observe the reconstructed waveform. [link] shows the reconstructed signals
for three different values of skipped samples. If the sampling frequency is
increased, fewer samples are skipped during the analog-to-digital
conversion, which makes the reconstruction process more accurate.

Levels: (a) 8, (b) 6, (c) 32

Signal Reconstruction with Different
Number of Samples Skipped in ADC: (a) 20,

DTFT and DFT

In this example, let us compute and compare the DTFT and DFT of digital
signals with the CTFT and FS of analog signals. [link] illustrates the
completed block diagram of this transform comparison system. As
discussed previously, to simulate an analog signal, consider a small time
interval (dt = 0.001). The corresponding discrete signal is considered to
be the same signal with a larger time interval (dt1 = 0.01).

(b)10, (c) 5

Block Diagram of a DTFT and DFT Transformation System

Generate a periodic square wave with the time period T = 0.1. Connect the
input variable mode to an Enum Control to make the signal periodic or
aperiodic. If the signal is periodic (case 0), compute the FS of the analog
signal and the DFT of the digital signal using the fft function over one
period of the signal. For aperiodic signals, only one period of the square
wave is considered and the remaining portion is padded with zeros. For
aperiodic signals, the transformations are CTFT (for analog signals) and
DTFT (for digital signals), which are computed using the fft function. In
fact, this function provides a computationally efficient implementation of
the DFT transformation for periodic discrete-time signals. However,
because simulated analog signals are actually discrete with a small time
interval, this function is also used to compute the Fourier series for
continuous-time signals. Because DFT requires periodicity, one needs to
treat aperiodic signals as periodic with a period T = ∞to apply this useful
function. That is why the fft function is also used for aperiodic signals to
compute CTFT and DTFT (as done in the earlier labs). However, in
practice, it should be noted that the period of the zero padded signal is not
infinite but assumed long enough to obtain a close approximation. Apply
the same approach to the computation of CTFT and DTFT. Because DTFT
is periodic in the frequency domain, for digital signals, repeat the frequency
representation using the textual statement yd=repmat(yd,1,9), noting
that the fft function computes the transformation for one period only.

Front Panel of a DTFT and DFT Transformation System:
Aperiodic Signal

[link] and [link] illustrates the front panel of the above transformation
system. It shows the Analog signal and Discrete signal in the time and

Front Panel of a DTFT and DFT Transformation System: Periodic
Signal

frequency domains using two waveform graphs. The transformation type is
also shown in the front panel for both of the signals.

Telephone Signal

Now let us examine a DFT application. In a touch-tone dialing system, the
pressing of each button generates a unique set of two-tone signals, called
dual-tone multi-frequency (DTMF) signals. A telephone central office
processes these signals to identify the number a user presses. The tone
frequency assignments for touch-tone dialing are shown in [link].

The sound heard when a key is pressed is a signal composed of two sine
waves. That is
Equation:

Frequency Assignments for Touch-Tone
Dialing

x(t) = sin(2πf1t) + sin(2πf2t)

For example, when a caller presses 1, the corresponding signal is
Equation:

x1(t) = sin(2π697t) + sin(2π1209t)

Other than touch-tone signals, modern telephone systems use DTMF event
signals for dial tone, busy tone and ringing tone. Table 1 lists the frequency
and timing for standard DTMF event signals.

DTMF Event Signals

Tone type Frequency Timing

Dial tone 350 and 440
Hz Continuous

Ringing
tone

480 and 620
Hz

Repeating cycles of 2 s on, 4 s
off

Busy tone 480 and 620
Hz 0.5 s on, 0.5 s off

In this application, let us examine the touch-tone dialing system of a digital
telephone. Ten input variables (k0,k1,.....,k9)are assigned to the telephone
keys (0,1,.....,9). Each input is connected to a Boolean control. Different
types of Boolean controls can be created on the front panel. For this
application, use OK Buttons(Controls → Modern → Boolean → OK),
each of which is marked with a number from 0 to 9. The selected operation
properties of an OK Button is “Switch until released,” as shown in [link].

This ensures that the corresponding signal gets generated when a key is
pressed and gets back into its initial position when the key is released.

Use another input variable, k10, to act as a counter to count the number of
times the keys are pressed. At the beginning, when no key is pressed, the
value of k10is zero and the system returns the dial tone (350 and 440 Hz
continuous tone). When the value of k10is equal to 10, meaning that the
keys were pressed for a total of 10 times, the system assumes that a valid
phone number is dialed and returns the busy tone or ringing tone. Connect

Operation Properties of an OK Button

all the Boolean inputs (k0,k1,.....,k9) to a Compound Arithmatic function
(Functions → Programming → Boolean → Compound Arithmatic) and
select the OR mode. The output of this function becomes true(1) if any
number key is pressed. The result is connected to the Case selector input of
a case structure. The input variable is also connected to the case structure.
For true case, k10is connected to an Increment function
(Functions→Programming →Numeric →Increment) and for the false
case, it is kept unchanged. The entire system is wrapped inside a While
Loop(Functions →Programming →Structures →While Loop). The
output of the case structure is then connected to a Greater or Equal
function (Functions →Programming →Comparison →Greater or
Equal) to ensure that the program exits from the while loop when is greater
than or equal to 10. The system shows the ringing tone or busy tone in the
graph and plays the waveform. [link] shows the completed block diagram
of the touch-tone telephone system.

Block Diagram of Touch-Tone Telephone System

[link] shows the front panel of the touch-tone telephone system. When the
program is run, one can hear the dial tone and see the signal displayed in
the upper waveform graph. As soon as any number key is pressed, the dial
tone is stopped and the corresponding key pad tone is heard and displayed.
When keys are pressed 10 times (a valid phone number), the system plays
the ringing tone or busy tone depending on the setting and displays the tone
in the lower waveform graph.

Lab Exercises

Exercise:

Front Panel of a Touch-Tone Telephone System

Problem: Dithering

Dithering is a method of decreasing the distortion of a low-frequency
signal due to signal digitization [link]. Dithering works best when the
sample rate is high in comparison with the rate at which the signal
changes.

To see how this works, consider a slowly varying signal and its
digitization, shown in [link](a). If noise is added to the original signal
amplitude roughly at one half the step size, the signal will look like
[link](b). If the digitized signal is passed through a resistor-capacitor
circuit to smooth it out, an approximation to the original signal can be
recovered. There is no theoretical limit to the accuracy possible with
this method as long as the sampling rate is high enough.

Design a system to analyze the dithering technique. First, show the
digitized and smoothed signal without dithering. Then, add random
noise to the input signal (noise level should not exceed 50 percent of
the step size of the digitized signal) and show the digitized and
smoothed version. Measure the maximum and average error between
the original signal and recovered signal.

Solution:

Insert Solution Text Here

Exercise:

Problem: Image Processing

DFT is widely used in image processing for edge detection. A digital
image is a two-dimensional signal that can get stored and processed as
a two-dimensional (2D) array. In the frequency domain, with the center

Processing at One Half-Step Size: (a) From Top, the
Original, Digitized and Smoothed Signal without

Dithering, (b) From Top, the Noise Added, Digitized
and Smoothed Signal with Dithering

denoting (0,0) frequency, the center portion of this 2D array contains
the low-frequency components of the 2D signal or image. The edges in
the image can be extracted by removing the low-frequency
components.

Read and display the image file image1.jpg provided on the book
website. Then, complete the following steps:

1. Compute and display the 2D DFT of the image using the
LabVIEW MathScript functions fft2 and fftshift.

2. Remove the low-frequency components of the image. A user-
controlled threshold can be specified to remove a varying amount
of the low-frequency components.

3. Compute and display the inverse 2D DFT of the image using the
LabVIEW MathScript functions ifft2 and fftshift. The
processed image should reflect the edges in the original image.

Solution:

Insert Solution Text Here

Exercise:

Problem: DTMF Decoder

Design a decoder VI for the DTMF system described in Telephone
Signal section. The VI should be capable of reading the touchtone
signal as its input and display the corresponding decoded key number
as its output.

Solution:

Insert Solution Text Here

Analysis of Analog and Digital Systems

In the previous labs, different mathematical transformation tools to
represent analog and discrete signals were examined. This final lab builds
on the knowledge gained in the previous labs to show how to use these
tools to perform signal processing.

Analog Filtering

Analog filters are defined over a continuous range of frequencies. Four
basic kinds of analog filters are lowpass, highpass, bandpass and bandstop.
[link] shows the ideal characteristics of these filters. In the noise removal
example of Lab 5 , an ideal lowpass filter was used to remove high-
frequency noise. However, the ideal characteristics are not physically
realizable and actual filters can only approximate the ideal characteristics.
The RC series circuit analyzed in Lab 3 and Lab 4 is a simple example of
an analog lowpass filter.

The voltage output for the circuit shown in [link] is given by [link]:
Equation:

Vout =
1/(jωC)

R + 1/(jωC)
Vin

Characteristics of Ideal Filters (a) Lowpass, (b) Highpass, (c)
Bandpass, (d) Bandstop

The magnitude and phase response can be easily found to be [link]:
Equation:

∣ H(ω) ∣=∣
Vout

Vin
∣=

1

√1 + ω2R2C 2

Equation:

∠H(ω) = arg(
Vout

Vin
) = −tan−1(ωRC)

If the positions of R and C are interchanged, a simple analog highpass filter
is obtained as shown in [link].

RC Series Circuit Used
as Analog Lowpass Filter

RC Series Circuit Used as
Analog Highpass Filter

The voltage output for this circuit is given by
Equation:

Vout =
R

R + 1/(jωC)
Vin

The corresponding magnitude and phase responses are
Equation:

∣ H(ω) ∣=∣
Vout

Vin
∣=

1

√1 + 1/(ω2R2C 2)

Equation:

∠H(ω) = arg(
Vout

Vin
) = tan−1(

1

ωRC
)

Digital Filtering

Digital signal filtering is a fundamental concept in digital signal processing.
Two basic kinds of digital filters that are widely used are FIR and IIR:

FIR (finite impulse response) – filters having finite unit sample responses

IIR (infinite impulse response) – filters having infinite unit sample
responses

Unit sample response denotes the output in response to a unit input signal.
It is common to express digital filters in the form of difference equations. In
this form, an FIR filter is expressed as
Equation:

y[n] =
N

∑
k=0

bkx[n − k]

where b’s denote the filter coefficients and the filter order. As described by
this equation, an FIR filter uses a current input x[n] and a number of
previous inputs x[n − k] to generate a current output y[n].

The difference equation of an IIR filter is given by
Equation:

y[n] =
N

∑
k=0

bkx[n − k] −
M

∑
k=1

aky[n − k]

where b’s and a’s denote the filter coefficients and N and M the number of
zeros and poles, respectively. As indicated by Equation (8), an IIR filter
uses a number of previous outputs y[n − k] as well as a current and a
number of previous inputs to generate a current output y[n].

In general, as compared to IIR filters, FIR filters require less precision and
are computationally more stable. Table 1 lists some of the differences
between FIR and IIR filters. For the theoretical details on these differences,
refer to [link].

Attribute FIR filter IIR filter

Stability Always stable Conditionally stable

Computational
complexity More operations Fewer operations

Precision Less coefficient
precision required

Higher coefficient
precision required

FIR Filter Attributes versus IIR Filter Attributes

where b’s and a’s denote the filter coefficients and and the number of zeros
and poles, respectively. As indicated by Equation (8), an IIR filter uses a
number of previous outputs y[n − k] as well as a current and a number of
previous inputs to generate a current output y[n].
Equation:

H(ω) =
b0 + b1e−jω + ... + bN e−jNω

1 + a1e−jω + ... + aM e−jMω

It is well-known that a direct-form implementation expressed by Equation
(9) is sensitive, in terms of stability, to coefficient quantization errors.
Noting that the second-order cascade form produces a more response that is
more resistant to quantization noise [link], the above transfer function is
often written and implemented as follows:
Equation:

H(ω) =
Ns

∏
k=1

b0k + b1ke−jω + b2ke−j2ω

1 + a1ke−jω + a2ke−j2ω

where Ns = ⌊N/2⌋ and ⌊.⌋ represents the largest integer less than or equal
to the argument. This serial or cascaded structure is illustrated in [link].

Cascaded Filter Stages

Each second-order filter is considered to be of direct-form II, shown in
[link], for its memory efficiency. One can implement each second-order
filter in software. Normally, digital filters are implemented in software, but
one can also implement them in hardware by using digital circuit adders
and shifters.

Second Order Direct-Form II

Lab 7: System Response, Analog and Digital Filters

Response of Discrete-Time Systems

This lab involves analyzing the response of discrete-time systems.
Responses are calculated for three different kinds of inputs; impulse, step
and sine. [link] shows the completed block diagram. Connect the input
variable w to an Enum Control so that an input type (impulse, step or sine)
can be selected. The response of this system to any discrete-time input x[n]
can be written as
Equation:

y[n] = ∑
i

bix[n − i] +∑
i

aiy[n − i]

For this example, consider five b’s and four a’s. The system output is
displayed using a waveform graph.

[link] shows the front panel of the above system. The front panel can be
used to interactively select the input type and set the coefficients a and b.
The system response for a particular type of input (impulse, step or sine) is
shown in the waveform graph.

Block Diagram of a Discrete-Time System

Square Root

As another example of discrete-time systems, let us consider taking the
square root of an integer number. Often computers and calculators compute
the square root of a positive number A using the following recursive
equation:
Equation:

()

Front Panel of a Discrete-Time System

y[n] =
1

2
(y[n − 1] +

x[n]

y[n − 1]
)

If the input x[n] to this equation is set as a step function of amplitude A,
then y[n] converges to the square root of A after several iterations.

[link] shows the block diagram for a square root computation system. The
number of iterations required to converge to the true value is shown in the
output. The initial condition Initial value is set as a control. [link] shows the
corresponding front panel.

Block Diagram of a Square Root Computation System

Analog and Digital Filtering

In this section, let us examine a basic analog and digital filtering example
by implementing a lowpass and a highpass filter in the analog and digital
domains, respectively. [link] shows the completed block diagram of the
filtering system. For analog approximation of the signals, use a higher
sampling rate (dw1=0.01). To detect whether the filtering is lowpass or
highpass, use the Enum Control Analog filter type. Calculate the magnitude
and phase response of these filters using equations provided in Chapter 7
for analog and digital filters. Set the values of R and C as controls, and
display the responses using a Build Waveform function and a waveform
graph.

Front Panel of a Square Root Computation System

Block Diagram of an Analog and Digital Filtering System

For the digital case, use a lower sampling rate (dw2=0.001). With the Enum
controls Digital filter type 1 and Digital filter type 2, select lowpass or
highpass and FIR or IIR filter type. Use a Build Waveform function and a
waveform graph to display the magnitude and phase responses of the digital
filters. [link] shows the front panel of this filtering system. For a better view
of magnitude response of the digital filter, set the properties of the
waveform graph as shown in [link] .

Front Panel of an Analog and Digital Filtering System

Lab Exercises

Exercise:

Problem: Bandpass and Bandstop Filters

Graph properties of magnitude response of digital filter

Use the lowpass and highpass filters (both analog and digital)
described in Analog and Digital Filtering section to construct bandpass
and bandstop filters. The bandpass filter should be able to pass signals
from 50 to 200 Hz and the bandstop filter should be able to stop
signals from 150 to 400 Hz. Determine the values of R and C required
for this analog filter design. Also, determine the values of the
coefficients required for an equivalent IIR digital filter design.

Solution:

Insert Solution Text Here

Exercise:

Problem: Noise Reduction

Use an analog lowpass filter to remove the high-frequency noise
described in Noise Reduction example of Lab 5. Repeat using a digital
lowpass filter.

Solution:

Insert Solution Text Here

Exercise:

Problem: Frequency Division Multiplexing (FDM)

FDM is widely used in digital communication to simultaneously
transmit multiple signals over a single wideband channel (for details,
refer to [link]). For FDM communication, individual signals are
multiplied with different carriers to avoid overlaps in the frequency
domain. Their time domain processing and corresponding frequency
spectrums are shown in [link]. Build a VI to implement an FDM
communication system for three signals x1(t),x2(t)and x3(t). Use the
files echo_1.wav and firetrucksiren.wav on the book website and a
random noise with a frequency range of 20 Hz to 20 kHz to serve as
these signals.

Solution:

Insert Solution Text Here

Exercise:

Problem: FDM Detector

Build a VI to implement an FDM detector system for detecting the
signal x1(t) as shown in [link].

FDM Communication System

Solution:

Insert Solution Text Here

FDM Detector

References

	Preface
	LabVIEW Programming Environment
	LabVIEW Programming Environment
	Lab 1: Introduction to LabVIEW

	LabVIEW MathScript and Hybrid Programming
	LabVIEW MathScript and Hybrid Programming
	Lab 2: LabVIEW MathScript and Hybrid Programming

	Convolution and Linear Time-Invariant Systems
	Convolution and Linear Time-Invariant Systems
	Lab 3: Convolution and Its Applications

	Fourier Series
	Fourier Series
	Lab 4: Fourier Series and Its Applications

	Continuous-Time Fourier Transform
	Continuous-Time Fourier Transform
	Lab 5: CTFT and Its Applications

	Digital Signals and Their Transforms
	Digital Signals and Their Transforms
	Lab 6: Analog-to-Digital Conversion, DTFT and DFT

	Analysis of Analog and Digital Systems
	Analysis of Analog and Digital Systems
	Lab 7: System Response, Analog and Digital Filters

	References

